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1. Introduction

The Need for Formalization In recent years there has been increasing interest in
computer-assisted and computer-verified theorem proving in both the mathematical and
computer science community. Notable theorems with long and dependency-rich proofs
have been verified thereby [Hal+17; Gon+13; Gon08]. Furthermore, it has become a
niche trend to submit papers teogether with machine-checked proofs. For such tasks
large mathematical corpora needed and still need to be formalized. Unlike natural lan-
guage proofs, where importing key results of a whole field of mathematics can be as short
as few sentences in a proof, in the setting of (fully) computer-verified proofs all transitive
dependencies require formalization. Another interest in such corpora particularly stems
from the Mathematical Knowledge Management (MKM) community [CF09] which de-
sires to work with mathematical knowledge as accessible data. Similar to databases,
structuredness of data in a digitized form with rich semantics and interconnections is a
key enabler for many useful operations. Those operations include “cataloguing, retrieval,
refactoring, change propagation […] and in some cases even application of mathematical
knowledge.” ([Koh14]) Indeed, possessing formalized knowledge may help to overcome
the “One-Brain-Barrier” [Koh14; Car+19]: While humans are particularly good at tasks
on small amounts of data requiring intuition and insights, computers are far better in
handling large datasets – albeit with more shallow tasks.

Computer Assistance in Formalization In the previous paragraph we motivated the
need for formalization from different perspectives. In all cases, this gives rise to the tasks
of creation and maintenance of such formalized knowledge. To foster their understanding
and possibly support humans performing them, we can borrow and evaluate field-tested
concepts from the field of software engineering, where instead of formalized knowledge
we create and maintain code. To name a few of such concepts in software engineering, we
have for example full-blown IDEs with syntax highlighting, autocomplete, (boilerplate)
code generation, linting and refactoring tools. In addition, the ecosystem – “DevOps”
– is well developed, for instance code changes in pull requests on GitHub can be made
to be automatically evaluated for their code quality and possibly rejected if they do not
fulfill specified requirements. Overall, the success of such tools in software engineering is
a good indicator for the usefulness of transferring them to formal systems and MKM. In
fact, we posit that the converse could also be true, namely that some tools with inherent
strict formalism could be fruitful to software engineering.1

Furthermore, we suppose assistance in rapid prototyping might also have applicability
1We hint at our refactoring principle presented in Chapter 5 together with its running example, which

is borderline to formal specifications.
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1. Introduction

in the realm of developing and formalizing new mathematics. As definitions, theorems
and proofs often undergo various revisions during development at the research frontier,
so must formalizations and computer-verified proofs. Hence, appropriate refactoring
tools accounting for such moving targets would allow a tighter feedback loop between
conceptual development and computer-assisted formalization.

Contribution of the Thesis We focus ourselves on refactoring, precisely on refactor-
ings to generalize existing knowledge. Basing our discussions on the MMT knowledge
representation framework [RK13], we first formally define what a generalization refac-
toring is and then present two such examples, namely Theory Splitting and App-
Gen, which is short for “application of existing generalization”. We consider the main
contribution to be two-fold: First, our definition of a generalization refactoring allows
us to express and partially verify behavior preservation within the system. Second, the
refactoring principle App-Gen, makes the ubiquitous practice of abstraction in math-
ematics and computer science explicit in form of an algorithm and an IDE graphical
plugin implementation. Concretely, we have the following use cases in mind, which we
shortly comment on below.

a) Help making existing knowledge more abstract

b) Help playing around with formalizations of new things

c) Help formalizing abstract concepts / proofs by only giving them in a concrete setting
and letting them generalize automatically

d) Help students understand abstractions and limitations thereof

Point a) is common in authoring big libraries in programming, which often necessitate a
flexible and thus abstract API for consumers. Indeed as history has shown, mathematics
is strikingly similar. While b) is very frequent in programming as well, we suppose it has
not yet gained likewise attraction in mathematics, partially due to usability differences
between a theorem prover and pen & paper. Hopefully, the advent of refactoring tools in
the future is able to marginally bridge this gap. We imagine use case c) being applicable
in two scenarios. First, formalization in a concrete setting might be cognitively easier.
Second, in narration or “text book” settings [Car+19] for diactic reasons, things are pre-
sented differently, potentially more concrete than in library settings. Hence, automatic
generalization might allow the reader to firm their abstract knowledge after having un-
derstood the concrete setting. As a special case alluded by d), knowing when concepts
do not generalize is useful in people’s mathematical education.

Independent of human-oriented use cases above, saving more abstract knowledge to-
gether with concrete incarnations widens the induced knowledge space and hence is
beneficial for MKM.

Structure of the Thesis In Chapter 2 we convey preliminaries regarding MMT and
review related work. Chapter 3 motivates and presents our framework for generalization

10



refactorings. In particular it defines theory- and diagram-level generalizations as well as
corresponding requirements on behavior preservation. Based on this framework, Chap-
ters 4 and 5 present our two refactoring principles Theory Splitting and App-Gen,
respectively. In Chapter 6 we discuss relevant implementation details and classify our
principles into the MMT ecosystem from an end user’s perspective. Finally, Chapter 7
concludes the thesis and shares ideas about future work.
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2. Preliminaries

2.1. MMT
In this work we leverage MMT [RK13] on the one hand as a theoretical framework to
formulate our discussions in and on the other hand as an implemented knowledge repre-
sentation system [MMTb; Rab18] to build our algorithms on. We strive to distinguish
them by denoting the theoretical framework as “MMT” and the practical implemen-
tation as the “MMT system”. In this section, we shortly introduce and recapitulate
a simplified version of MMT’s theoretical side necessary to understand this work and
follow the exposition in [RM18a].

There are many point of views from which MMT and the MMT language can be
introduced. Central to this work is its intention to allow a scalable module system
for mathematical knowledge management while being foundation and logic independent
[Rab15]. We see in a minute what this means in practice. The essential way in which
formal knowledge1 is organized in MMT is by means of theories and theory morphisms.

Theories Theories are ordered lists of typed declarations with unique names and, for
structuring purposes, also inclusions:

Definition 2.1.1 (Theory, adapted from [RM18a]). The grammar for theories
and expressions is

𝑇𝐷𝑒𝑐 ∶∶= 𝑇 = {𝐷𝑒𝑐,… ,𝐷𝑒𝑐} theory declaration
𝐷𝑒𝑐 ∶∶= 𝑐 ∶ 𝐸[= 𝐸] | include 𝑇 constant or include declaration
𝐸 ∶∶= 𝑐 | … expressions built from constants

We write dom(𝑇 ) for all declarations of a theory, and Obj(𝑇 ) for all induced closed
and well-typed expressions over dom(𝑇 ). If 𝑆 is included in 𝑇 , we write 𝑆 ↪ 𝑇 .

Assumption of Well-typedness

Except where otherwise noted, we assume well-typed theories and below well-typed
(total) morphisms throughout this thesis. Furthermore, we omit the actual typing
rules as they are mostly irrelevant for this thesis and the reader may safely read

1Although we focus on formal knowledge in this thesis, do note that MMT and its related ecosystem
can also be used for stating flexiformal knowledge, e.g. see [Ian+16] for a concrete implementation
and [Ian17] for more theoretical background.
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2. Preliminaries

over the parts where they are nevertheless used.

For the definition of morphisms later we need one more utility definition:

Definition 2.1.2 (Flat Theory). A flat theory is a theory without inclusions. Ev-
ery theory 𝑇 admits a flattening 𝑇 ♭, which replaces every inclusion by the flattening
of the included theory.a

aOne important aspect, which might go unnoticed with our informal definition, is that diamond
inheritance via inclusions does not lead to duplicated symbols, but rather unifies them, i.e. only
copies those symbols once over to the target theory. We refer to [RM18a] for details.

Declarations are able to subsume many established notions such as “type / function
/ predicate symbols, axioms [and] theorems” ([RM18a]) as well as proofs by employing
the propositions-as-types idiom. Let us elaborate on that by showing how the concept
of a monoid could be formalized:

1 theory Monoid =
2 include ?LF ❙
3 include ?NatDed ❙
4

5 U: type ❙
6 e: U ❙
7 op: U ⟶ U ⟶ U ❘ # #1 ∘ #2 ❙
8 associative: ⊦ ∀ [a: U] ∀ [b: U] ∀ [c: U] (a ∘ b) ∘ c ≐ a ∘ (b ∘ c) ❙
9

10 neutral: U ⟶ prop ❘ = [e'] ∀ [a: U] (a ∘ e' ≐ a) ∧ (e' ∘ a ≐ a) ❙
11 e_neutral: ⊦ neutral e ❙
12 e_unique: ⊦ ∀ [e': U] (neutral e') ⟹ e' ≐ e
13 ❘ = … ❙ /T Proof omitted ❙
14

15 power: U ⟶ ℕ ⟶ U ❘ # #1 ^ #2 ❘ = … ❙
16 thm_power: ⊦ ∀ [a: U] ∀ [n: ℕ] ∀ [m: ℕ] a ^ (n + m) ≐ (a ^ n) ∘ (a ^ m)
17 ❘ = … ❙ /T Proof omitted ❙
18 ❚

Remark 2.1.1 (MMT Surface Syntax). For convenience, instead of adhering to the
formal grammar above, we use the actual MMT surface syntax [MMTa; Rab14]
employed by the MMT system to present listings. Apart from two aspects we
mention below, we expect the reader to be able to easily match this syntax to the
formal grammar.

The three symbols ❘❙❚ are terminators at the levels of being within a dec-
laration, outside a declaration within a theory, and outside a theory, respectively.

14



2.1. MMT

They can be thought of as refined versions of semicoli in C-inspired programming
languages and can be safely ignored when reading the present thesis. Another
difference to the formal grammar is the ability to create custom notations for dec-
larations. For example, in the declaration for op we write # #1 ∘ #2 to introduce
a new infix notation ∘ receiving two arguments corresponding exactly to the first
and second argument of op itself.

Given the hint that […] denotes lambda abstraction in the listing above, we assume the
reader is familiar enough with basic (higher-order) logic to understand the listing at
surface level, possibly disregarding synctactic unfamiliarities. Let us spot the different
meanings MMT declarations subsume. Declarations without a definiens (U, e, op, …)
constitute the signature and language for formulating the knowledge in. They can be
thought of as (formal) constructors. As a special case, we have axioms (associative,
e_neutral) via propositions-as-types. In contrast, declarations with a definiens serve
the following two purposes. First, they can act as definitions as such (neutral, power)
to shorten other declarations. Second, arguably as a special case, they can represent
theorems (e_unique, thm_power), where the definiens is an inhabitant of the type – or
dually a valid proof.

Let us now revisit the declarations we skipped over. Precisely, we neither explained
what the two inclusions do nor where all the symbols (type, ⟶, ⊦, …) come from given
that they were not part of the formal grammar definition above. Since MMT strives to
be foundation and logic independent, many if not almost all symbols of the listing above
are actually not baked into MMT’s core language. That is where the inclusions come
into play. On the one hand, we include the Logical Framework LF [HHP93] to serve as
our foundation, which provides us with the symbols and notations type⟶[…] together
with their corresponding typing rules. Indeed, the MMT framework only has very few
typing rules on its own and outsources this work to foundations. On the other hand, we
include NatDed which we let stand for a generic theory formalizing basic logic, natural
deduction calculi and proof types. This allows us to use the symbols ⊦∀∧≐⟹ and the
proof constructors we left out in the omitted proofs.2 For brevity, we will readily assume
both inclusions to be always existent in our listings and will thus omit them.

Remark 2.1.2 (Omittance of Proofs). At time of writing, the MMT system does
not offer a practical way to formalize proofs since proofs can only be given as
“raw” proof terms with constructors of the chosen natural deduction calculus. As
a consequence, we omit proofs in definienses throughout the listings of the thesis.

2In the MMT system, LF is provided by an archive called MMT/urtheories of which parts are imple-
mented as Scala extensions to the pluggable MMT typechecker. The natural deduction calculus can be
found in MitM/Foundation. For both see https://gl.mathhub.info/MMT/urtheories/blob/master/
source/lf.mmt and https://gl.mathhub.info/MitM/Foundation/blob/master/source/math.mmt,
respectively.
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2. Preliminaries

Morphisms The other building block of knowledge organization in MMT are mor-
phisms between theories. A (total) morphism 𝜑∶ 𝑆 ⇝ 𝑇 is a set of assignments 𝑐 ∶= 𝑒
for every 𝑐 ∈ dom(𝑆♭) with 𝑒 ∈ Obj(𝑇 ♭). For practical purposes, we can instead consider
its “more structured” definition on non-flat theories as well:

Definition 2.1.3 (Morphism, adapted from [RM18a]). The grammar for mor-
phisms is

𝑀𝐷𝑒𝑐 ∶∶= 𝑚 ∶ 𝑇 → 𝑇 =[𝑀] {𝐴𝑠𝑠,… ,𝐴𝑠𝑠} flat morphism declaration

𝐴𝑠𝑠 ∶∶= 𝑐 ∶= 𝐸 | include 𝑀 assignment to declaration or
inclusion of morphism

A morphism can “inherit” the assignment of another morphism by including it. For
example, this is useful when we have theories 𝑅 ↪ 𝑆, an existing morphism 𝜑∶ 𝑅 ⇝ 𝑇
and wish to extend that morphism to 𝜓 ∶ 𝑆 ⇝ 𝑇 . That extension is possible with just
include φ without mimicking all the assignment of 𝜑.

Naturally, every morphism 𝑆 ⇝ 𝑇 can be lifted in its domain dom(𝑆) to Obj(𝑆), which
we call the homomorphic extension 𝜑 ∶ Obj(𝑆) → Obj(𝑇 ).3 As an immediate conse-
quence, we realize that morphisms only need to defined on constants without definiens
as their homomorphic extension accounts for them anyway. Overall, morphisms pro-
vide a means to translate expressions of one theory to another and thus to connect
existing knowledge. The importance and meaning of morphisms is elaborated on in
Chapter 3. Nonetheless, we would like to highlight one particularly important corollary
here [Rab17]:

Corollary 2.1.0.1 (Truth Preservation). If 𝑐 ∶⊢ 𝐸 = 𝑒 is a theorem in a theory 𝑇
and 𝜑∶ 𝑇 ⇝ 𝑆 a morphism leaving the logic foundation unchanged, then ⊢ 𝜑(𝐸) is
a theorem in 𝑆 as well with proof 𝜑(𝑒)

Proof. This readily follows from the fact that all entities were well-typed, which implies
that images under the homomorphic extension of the morphism are well-typed as well.

In fact, inclusions 𝑅 ↪ 𝑆 are morphisms as well, namely, they just assign every domain
declaration in 𝑅♭ its corresponding copy in 𝑆♭.

In MMT surface syntax, morphisms are also known as “views” and are written as
follows:

1 /T This corresponds to a morphism φ: S ⇝ T ❚
2 view φ : S -> T =

3In this view, we consider the homomorphic extension as a function on sets and therefore write →
instead of ⇝. In Section 5.4 we will briefly note that homomorphic extensions can be thought of
pushouts, which would justify them being similar to morphisms again.
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2.2. MMT Dependency Order

3 a = b ❙
4 c = d ❙
5 ❚

Category 𝕋𝕙𝕪 In Section 5.4, we make use of categorical constructions, namely pushouts
and pullbacks, to motivate a categorical interpretation of the refactoring principle pre-
sented there. Hence, we define the category we are working in by

Definition 2.1.4 (Category). By 𝕋𝕙𝕪 we denote the category of (well-typed) the-
ories and theory morphisms with the apparent identity morphisms and the compo-
sition of 𝜑∶ 𝑅 ⇝ 𝑆, 𝜓∶ 𝑆 ⇝ 𝑇 given by

(𝜓 ∘ 𝜑)(𝑐) ∶= 𝜓(𝜑(𝑐))

For convenience, we will use the categorical term “diagram” to refer to a finite subset
of theories and morphisms. When stressing the contained knowledge such a diagram
represents, we occasionally refer to it as knowledge graph.

Paths We omitted the fact that in the more general framework [RK13] many entities
are assigned a unique path, a so-called MMT URI. In particular, theories, morphisms
as well as declarations inside theories and morphisms all have corresponding paths. We
will only occasionally refer to them.

2.2. MMT Dependency Order
The refactoring principle Theory Splitting we state in Chapter 4 is able to reorganize
a theory’s declarations onto multiple new theories. In particular, this requires knowing
dependencies between declarations, which this section will define. For example, in the
monoid formalization we saw above, it is evident that we need the declaration of the
universe type 𝑈 – among others – to state the axiom of associativity. At the end of
this section we will be able to formally state 𝑈 ≤𝑇 associative to precisely mean this
dependency.

To allow for a more general framework we might exploit in the future, we desire to
first define a finer dependency relation, namely on declaration components:

Definition 2.2.1. Declaration components of

• an include 𝑇 declaration is the singleton set {include 𝑇}

• a constant declaration 𝑐 ∶ 𝐸 without definiens is the singleton set {𝐸}

• a defined constant declaration 𝑐 ∶ 𝐸 = 𝑒 is the (multia)set {𝐸, 𝑒}.

17



2. Preliminaries

For a theory 𝑇 let comps(𝑇 ) denote all (taggedb) declaration components.
aWith the right foundation loaded into MMT we could in theory have a declaration whose type

is its definiens at the same time.
bIf two declarations have the same type and/or definiens, we still consider their components to

be distinct in comps(𝑇 ).

Definition 2.2.2 (Dependency Relations). Let 𝑇 be a theory. The component
dependency relation ≤𝐶 on comps(𝑇 ) is given by the smallest relation fulfilling

𝑥 ≤𝐶 𝑥
𝑥 is looked up (transitively) while typechecking 𝑦

𝑥 ≤𝐶 𝑦

Likewise the declaration dependency relation ≤𝑇 on dom(𝑇 ) is given by the
smallest relation fulfilling

𝑥 ∈ 𝛿 𝑦 ∈ 𝛿′ 𝑥 ≤𝐶 𝑦
𝛿 ≤𝑇 𝛿′

where 𝑥 and 𝑦 are components of declarations 𝛿 and 𝛿′, respectively.
Unless stated otherwise, <𝐶 and <𝑇 denote the induced strict orders.

Remark 2.2.1. For declarations 𝑐 ∶ 𝐸 = 𝑒 we especially have 𝐸 ≤𝐶 𝑒.

Lemma 2.2.1. Let 𝑇 be a theory.

(i) ≤𝐶 is a partial order.

(ii) ≤𝑇 is a partial order.

(iii) The theory with the same declarations as 𝑇 stemming from a reordering given
by any linear extension of ≤𝑇 is well-typed.

Proof. ad (i), (ii): Reflexivity and transitivity can be easily seen. Antisymmetry is due
to the wellformedness of the theory.
ad (iii): Suppose 𝛿 were ill-typed in the reordering given by ⊑𝑇 . This means that while
typechecking, another declaration 𝛿′ ≠ 𝛿 was attempted to be looked up, but not found
because it appeared after 𝛿, i.e. 𝛿′ ≤𝑇 𝛿 and 𝛿 ⊑𝑇 𝛿′. This implies 𝛿′ = 𝛿 leading to a
contradiction.

18



2.3. Related Work

Example 2.2.1. The sequential notation of declarations of theories in this thesis
and in MMT surface syntax is just one possible linear extension of ≤𝑇 .

Remark 2.2.2. Narrative Order If the particular total order is irrelevant, we will
speak of “the” narrative order.

2.3. Related Work

We describe related work for refactoring in general and specific to both generalization
principles we present in this work, respectively.

2.3.1. Refactoring

The concept and act of refactoring is well-known in the discipline of software engineering
in both academia and industry. A recent literature review can for example be found
in [SK18]. Pioneering works [Opd92; Fow+99] defined the central idea of refactoring
as “[changing the] internal structure of software to make it easier to understand […]
without changing its observable behavior.” ([Fow+99, ch. 2]) In the present thesis we
have a similar goal in mind for formal knowledge graphs. However, we interpret it
slightly more losely to capture additional supposedly useful refactorings: Apart from
making the knowledge graph easier to understand for users, we also consider the act
of abstraction and increase of knowledge-induced items to be a refactoring, namely
from the MKM point of view. We remark that our standpoint shares similarities with
database engineering where on the one hand database views ease accessibility by users
(and possibly performance) and on the other hand normal forms remove redundancies
and increase “buildable” knowledge.

Refactorings have been suggested and applied not only on programming languages,
but also on more formal documents such as UML models [Sun+01], formal specifications
in Z [SPT02; LZ08] and tactic-based proofs [Whi13; SH02]. In this work we present refac-
torings on MMT theories, which subsume formal specifications and (linearized4) proofs
via the propositions-as-types idiom. We focus ourselves on refactorings to generalize
existing knowledge. Such generalization refactorings have already been suggested in
[Opd92; Fow+99], however mostly in the realm of classes such as Pull Up Field /
Method, Extract Subclass / Superclass / Interface, Collapse Hierarchy.
These principles are all instances of class hierarchy reorganization and hence are closely
related to Theory Splitting. Therefore, we continue this discussion in the respective
subsection below.

4Indeed, as noted in Remark 2.1.2 proofs are practically not tractable in the MMT system.
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Behavior Preservation The crucial property of behavior preservation has been defined
and dealt with varying degrees of formality throughout the refactoring discipline. How-
ever, neglecting the fluctuating formality in all works cited below, common to all is that
they deal with behavior preservation at most in natural language on the meta level. We
explain below how our framework allows us to express and partially verify that property
within the MMT system itself.

The early works [Opd92; Fow+99] targetting Java as their exemplary language leave
behavior preservation undefined as a fuzzy concept. Even though [Opd92] states precon-
ditions for their refactorings as first-order logic formulae and argues larger refactorings
be behavior preserving as compositions of smaller ones, eventually behavior preservation
for those building blocks is argued informally. Indeed, to tackle the inherent semantic
complexity of Java, there have been efforts to formally reason about behavior by us-
ing an executable formal semantics of Java [GM06] or by temporary compilation to a
simpler intermediate format [Sch+12]. In the latter case, the refactoring is described
for and applied in the simpler format, after which the code is again translated back to
Java. Eventually, formal systems such as proof languages inherently admit a completely
rigorous treatment [Whi13]. In fact Liu and Zhu argue that formal systems make it
easier to validate behavior preservation [LZ08].

Whiteside argues that while defining behavior preservation by type-checking would be
possible, it is infeasible performance-wise and possibly insufficient to ensure preservation
of intended meaning for theorem statements as users would expect [Whi13, ch. 7.4]. We
counter the first point insofar that we imagine our generalized theories be represented
next to their original theories in the knowledge graph anyway, making typechecking
necessary in any case. Precisely, we call the theory 𝐺 a generalization of a theory 𝑇
if there is a morphism 𝐺 ⇝ 𝑇 . We posit that storing all three entities is favorable
MKM-wise.5 Thus, being a generalization amounts to type-checking all three entities.
Furthermore, we define behavior preservation as the property that every 𝑇 -declaration
has a suitable 𝐺-expression as its preimage, i.e. all 𝑇 -declarations can be recovered by
following the morphism. In case of renamings, this property can be easily verified by
the system. Indeed, the refactorings we propose in the present thesis produce renamings
witnessing their generalizations. We remark that we have not yet built such verification
into the MMT system.

2.3.2. Theory Splitting

We describe Theory Splitting as a reorganization of a single theory’s declarations
onto multiple theories which are then suitably linked via inclusions to account for dec-
laration interdependencies. Employing the analogy between theories and classes, such

5Again we can employ the analogy to databases: Let 𝑇 correspond to the rows of a database view,
let 𝐺 ⇝ 𝑇 correspond to the SQL statement the database view is decribed by, and finally let 𝐺
be standing for the underlying tables the statement draws from. Then storing 𝑇 is primarly useful
user-wise, whereas storing 𝐺 is useful system-wise, perhaps because other data analytics could be
drawn from it. Lastly, storing the morphism (view) helps keeping 𝑇 up-to-date when doing changes
at 𝐺.
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reorganization methods can be traced back to pioneering works [Opd92; Fow+99] and
probably beyond. Especially, the following principles from [Fow+99, chs. 7, 11] all
describe related reorganization actions:

• Move Method/Field

• Inline Class

• Pull Up Field/Method

• Pull Down Field/Method

• Extract Class/Subclass/Superclass/Interface

• Collapse Hierarchy

Hence, we consider Theory Splitting primarly as an example fitting both the realm
of formal knowledge representation systems and our generalization framework. Most of
the advantages attributed to the above refactorings can also be applied to our principle.
In particular the principles prefixed by Move and Extract can be used to increase the
cohesion of individual classes (theories), which is a measure on the relatedness between
the members. This in turn is known to have the benefit of reducing complexity and
improving maintainability of code [Ing18].

However, an arguably fortunate difference to programming languages is that declara-
tions within a theory cannot share “hidden” behavioral dependencies as is for example
the case with complex synchronization properties in mainstream languages. This is at
least true for commonly found logic foundations.6

Source of Refactoring Albeit in the present work we do not consider automatic sug-
gestion of theory splits in knowledge graphs, we would like to highlight previous work
in software engineering tackling effectively the same problem with class hierarchies.
Namely, [ST00; SS04] applied methods from the discipline of concept formation on both
Java class hierarchies as such and its usage patterns in client code. As a result, new
behavior-preserving class hierarchies can be created which optimally reflect usage pat-
terns. In knowledge representation systems, we posit that usage patterns of a theory
correspond to incoming and outgoing morphisms. The outgoing morphisms especially
subsume child theories via inclusions. This standpoint is consistent with additional de-
sirable properties on morphisms we suggest in a side note in Section 6.1, namely that
they be total, surjective and simple. Indeed, [ST00] similarly suggests usage patterns be
simple and exhaustive of features, e.g. a class must neither outsource its business logic
onto the consumer nor have unused fields.

6In the MMT system, a logic foundation contributes typing rules by means of Scala code. Thus, in
theory arbitrarily complex and unforeseeable restrictions could be imposed.
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2.3.3. App-Gen
We describe App-Gen as a principle which, given a generalization of one theory 𝑇
encoded as a morphism 𝐺 ⇝ 𝑇 , tries to apply the same syntactic generalization to
theories including 𝑇 . Put differently, it tries generalizing theories along (user-defined)
morphisms.

Relation to Subtype Lifting We can choose the morphisms along we generalize in such
a way that they represent subtyping. Namely, if 𝑠 ∈ 𝑆 is a type symbol within a theory
and 𝑡 ∈ 𝑇 a subtype symbol of 𝑠, then a morphism can assign 𝑠 ↦ 𝑡. By the operating
principle of App-Gen, we would now generalize 𝑇 -expressions by inverting (rewriting)
𝑡 to 𝑠, or in other words, by lifting a subtype to a supertype. In many programming
languages, classes and interfaces are indeed very similar to types and for a specific
class we can naturally consider the classes/mixins/interfaces it extends/implements as
supertypes of that class. With these analogies, generalizing in our sense is related to
the action of choosing a more general type for variable declarations. Searching for these
more general types within class hiearchies and applying the generalization has already
been explored and automated in [BFS07; Tip07; SM07; SMM06], mainly to decrease
unnecessary coupling between classes.

Let us shortly elaborate on the refactoring algorithm implemented in [BFS07]. It can
either be run in a mode such that it proposes the most general type on the existing class
hierarchy (subtype) lattice or be instructed to create new minimal maximally-fitting
supertypes. In both cases, the protocol given by the variable’s usage, i.e. how and which
methods or fields on it are accessed, is statically inspected to infer the more general type.
Neglecting actually finding the more general type, App-Gen is arguably more general
insofar that it operates on the “morphism lattice”, which subsumes the subtype lattice.
Concretely, we are able to generalize not only to inherently compatible supertypes, i.e.
included theories, but also to structurally different theories under the assumption that a
translating morphism is given. Independently of this fact, creation of new better fitting
types can be considered to be an application of Theory Splitting.

Based on those subtype lifting refactorings, graphical user interfaces and linting tools
have also been created to help users with applying the principles: based on [Tip07]
the Eclipse Java IDE offers the refactorings Generalize Declared Type and Use
Supertype where Possible [Fou19]. In addition, the reference [BFS07] we shortly
detailled in the last paragraph provides an Eclipse plugin as well. Similar features are
offered by the IntelliJ IDEA Java IDE under the name of Use Interface where
Possible [Jet19].

Relation to Automated Theorem Proving Since App-Gen works on MMT theories
and expressions therein, it particularly subsume theorem statements and proofs via
propositions-as-types. Hence our work is related to automated abstraction of proofs as
well. Indeed, in the context of automated theorem proving and understanding proofs
by analogies, abstractions of proofs have been studied as an automated means of proof
reuse and proof discovery [BC87; TK92; WK00; JL04].
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Let us elaborate on the differences and similarities of [BC87; TK92] and our work. In
these works the authors desire to exploit proofs by analogies in the following way: Sup-
pose a user has got a theorem thmA they proved via proofA and a theorem thmB in mind
they want to prove by (synctactically) analogous arguments. The authors then suggest
the user provide a “transformation rule” representing the analogy in mind. Concretely,
the transformation rule acts on a “proof scheme” of proofA to output a proof scheme for
proofB. Here, proof scheme means that the rule does not necessarily act on the actual
terms in proofA, but may rather act on free variables such that the rule’s LHS is first
(HO-)pattern-matched with proofA. Then applications of the resulting unifiers on the
rule’s RHS gives rise to proof candidates for thmB.

We exhibit very similar transformation rules under the hood in App-Gen, which we
call rewrite rules instead. However, contrary to [BC87; TK92], our framework sees analo-
gies and specializations7 in the reversed direction. Namely, consider we have a theory
𝑅 and a theory 𝑆, then a morphism 𝑅 ⇝ 𝑆 represents an analogy or specialization.
Now let 𝑅 contain thmB and 𝑆 contain {𝑡ℎ𝑚𝐴, 𝑝𝑟𝑜𝑜𝑓𝐴}. Then within the framework
of [BC87; TK92], we could come from 𝑆 to (𝑅 ∪ 𝑝𝑟𝑜𝑜𝑓𝐵) by specifying transformation
rules exactly in that direction. However in our framework, we directly use the morphism
𝑅 ⇝ 𝑆 to automatically generate applicable transformation rules going from 𝑆 to 𝑅.
They then hopefully capture the transformation rules the user had in mind as well.

We argue that a generalization algorithm should first exploit pre-existing specialization
morphisms before resorting to ask the user to manually enter additional transformation
rules. In fact, independently, there are several reasons to record the morphisms in the
knowledge management system anyway, cf. Chapter 3 and citations therein. However,
we also note that we canont hope for an algorithm which exploits every morphism to an
extent a human would be able to. Hence, we propose in our future work section that
our algorithm be extensible by user-defined rewrite rules as well.

Source of Refactoring Finally, as was the case with Theory Splitting, we again
defer batch application of App-Gen to future work. As the rich existence of morphisms
is crucial for the applicability of this principle, we would like to refer to approaches of
automatic morphism discovery in knowledge representation systems [NK07; MKR18].

7Analogies form a strict subset of specializations, possibly involutions, e.g. consider the prime example
of Magma ⇝ Magma swapping the operation’s arguments.
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3. Framework for Generalization
Refactorings

Man muss immer generalisieren.

Jacobi in the 1840s [DH82, p. 134]

The principles we present in later chapters generalize theories to more abstract theories
or even to a bunch of more abstract theories, i.e. a diagram. Therefore, in this chapter we
define theory-level and subsequently diagram-level generalization refactorings1. Roughly
speaking, we will define them in terms of the existence of morphisms from the more
general to the original part, and in case of diagrams with some commutation properties
as well.

Structure of the Chapter In Section 3.1 we first motivate by means of examples that
morphisms are indeed a sensible choice to express specializations or – if read backwards
– generalizations. Then, in Section 3.2 we formally define theory- and diagram-level
generalizations, for which Section 3.3 then presents initial formal notations of behavior
preservation. Finally, Section 3.4 overviews some of generalization principles the authors
have in mind, of which two constitute the contents of the present thesis.

3.1. Intuition for Morphisms going from the General to the
Concrete

Albeit there are several different angles from which we can get a feel for MMT morphisms,
common to all is that they represent specialization and refinement from their poorer,
more general domain to their richer, more concrete codomain. Dually, every morphism
also represents a generalization in the inverse direction, which is central to the idea
of our framework. Note that in the inverse direction we do not necessarily have a
“generalization morphism”, but only a (multi)map. Nonetheless, the inverse map can
be successfully exploited to generalize along morphisms, as we do in Chapter 5.
To exemplify the mentioned notions, we list a few slogans and concrete examples below,
which are partly taken and adapted from [OMT; Rab17; OMT].2

1Since we consider all generalizations in this thesis to be refactorings, we will stick to only saying
“generalizations” from now on.

2We especially refer the reader to [Rab17] for more advanced (categorical) constructions with mor-
phisms.

25



3. Framework for Generalization Refactorings

“Every model of the codomain gives rise to a model of the domain” Consider the for-
malization of natural numbers Nat, monoids Monoid and the fact that natural numbers
form monoids in a canonical way, which is expressed by the morphism 𝜎 ∶ Monoid ⇝ Nat:

1 theory Monoid =
2 U: type ❙
3 e: U ❙
4 op: U ⟶ U ⟶ U ❘ # #1 ∘ #2 ❙
5 associative: ⊦ ∀ [a: U] ∀ [b: U] ∀ [c: U] (a ∘ b) ∘ c ≐ a ∘ (b ∘ c) ❙
6

7 neutral: U ⟶ prop ❘ = [e'] ∀ [a: U] (a ∘ e' ≐ a) ∧ (e' ∘ a ≐ a) ❙
8 e_neutral: ⊦ neutral e ❙
9 ❚

10

11 theory Nat =
12 /T Natural numbers as usual with Peano axioms ❙
13

14 ℕ: type ❙
15 0: ℕ ❙
16 s: ℕ ⟶ ℕ ❙
17 plus: ℕ ⟶ ℕ ⟶ ℕ ❘ = … ❘ # #1 + #2 ❙
18

19 /T … ❙
20 ❚
21

22 view σ : Monoid -> Nat =
23 U = ℕ ❙
24 e = 0 ❙
25 op = plus ❙
26 associative = … ❙
27 e_neutral = … ❙
28 ❚

Indeed, the morphism refines the poorer, more general concept of monoids to the
richer, more concrete concept of natural numbers. Precisely, the morphism tells us that
every model of natural numbers also induces a model of monoids. Namely, let a model
of natural numbers be given with interpretation function J⋅Kℕ over Nat-expressions. To
induce a monoid model (along 𝜎), we look at the assignments of the morphism. They
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instruct us what the interpretation function J⋅KMon of the monoid model shall do:

JUKMon ∶= J𝜎(𝑈)Kℕ = ℕJeKMon ∶= J𝜎(𝑒)Kℕ = 0JopKMon ∶= J𝜎(𝑜𝑝)Kℕ = +JassociativeKMon ∶= J𝜎(𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒)Kℕ = …Je_neutralKMon ∶= J𝜎(𝑒_𝑛𝑒𝑢𝑡𝑟𝑎𝑙)Kℕ = …

This extends homomorphically to all Monoid-expressions and thus we have a total in-
terpretation function. This can concisely be written as J⋅K𝑀𝑜𝑛 ∶= J⋅Kℕ ∘ 𝜎. Put in words,
the monoid’s interpretation function first uses the morphism Monoid ⇝ Nat to rewrite
to a Nat-expression and then employs the Nat-model we have at hand to find a fitting
interpretation. Note that the result is in fact a valid monoid model since the interpreta-
tions of associative and e_neutral exactly represent proofs of the corresponding monoid
axioms ensuring validity.

The same reasoning can be found in many hierarchies of (algebraic) structures. For
example, the chain of statements “Hilbert spaces induce normed vector spaces, which
induce metric spaces, which induce topological spaces” exactly translates to a refinement
chain of morphisms in MMT:

TopologicalSpace ⇝ MetricSpace ⇝ NormedVectorSpace ⇝ HilbertSpace

On the left side, we see the poorest structure and conversely on the right side, we can find
the richest structure. Walking the chain forwards means incarnating existing notions,
e.g. continuity in topologies, in richer structures, e.g. 𝜀𝛿-definition in metric spaces. In
contrast, walking backwards means generalizing statements. In fact, our principle App-
Genpresented in Chapter 5 exactly does this by means of rewrite rules.

“Logic Translation” In the previous example, we focussed on the aspect of model
induction by a morphism. Dually, we have the aspect of translation. Indeed, where we
have translation on the formulae side of things, we have model induction on the model
side of things. With the algebraic hierarchy, one usually stresses the latter viewpoint.
Hence, we would like to present an example to stress the translational aspect. Namely,
consider 𝜎 ∶ ℒ ⇝ ℒ′ with ℒ ∶= 𝑃𝐿 (propositional logic) and ℒ′ ∶= 𝐹𝑂𝐿 (first-order
logic), where the morphism embeds 𝑃𝐿 into 𝐹𝑂𝐿:

1 theory PL =
2 /T The type of propositions ❙
3 ο: type ❙
4 ∧: ο ⟶ ο ⟶ ο ❙
5 ¬: ο ⟶ ο ❙
6

7 /T To provide an easier example, we postulate the existence
8 of two variables ❙
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9 a: ο ❙
10 b: ο ❙
11 ❚
12

13 theory FOL =
14 /T The type of individuals (and hence terms) ❙
15 ι: type
16

17 /T The type of propositions (and hence formulae) ❙
18 ο: type ❙
19

20 ∧: ο ⟶ ο ⟶ ο ❙
21 ¬: ο ⟶ ο ❙
22 ∀: (ι ⟶ ο) ⟶ ο ❙
23 =: ι ⟶ ι ⟶ ο ❙
24

25 a: ο ❙
26 b: ο ❙
27 ❚
28

29 view σ : PL -> FOL =
30 ο = ο ❙
31 ∧ = ∧ ❙
32 ¬ = ¬ ❙
33

34 a = a ❙
35 b = b ❙
36 ❚

By means of the (homomorphic extension of the) morphism, we can now translate
𝑃𝐿-sentences to 𝐹𝑂𝐿-sentences, e.g.

𝜎 (¬𝑃𝐿(¬𝑃𝐿𝑎𝑃𝐿 ∧𝑃𝐿 ¬𝑃𝐿𝑏𝑃𝐿)) = ¬𝐹𝑂𝐿(¬𝐹𝑂𝐿𝑎𝐹𝑂𝐿 ∧𝐹𝑂𝐿 ¬𝐹𝑂𝐿𝑏𝐹𝑂𝐿)

where we indexed all constants with the theory they are coming from to ease reading.
Thus we have translation (refinement) into a richer structure.

“Analogies as Non-Strict Refinements” Consider again the theory of monoids, but
now with an endomorphism:

1 theory Monoid =
2 U: type ❙
3 e: U ❙
4 op: U ⟶ U ⟶ U ❘ # #1 ∘ #2 ❙
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5 associative: ⊦ ∀ [a: U] ∀ [b: U] ∀ [c: U] (a ∘ b) ∘ c ≐ a ∘ (b ∘ c) ❙
6

7 neutral: U ⟶ prop ❘ = [e'] ∀ [a: U] (a ∘ e' ≐ a) ∧ (e' ∘ a = a) ❙
8 e_neutral: ⊦ neutral e ❙
9 ❚

10

11 view σ : Monoid -> Monoid =
12 U = U ❙
13 e = e ❙
14 op = [a, b] b ∘ a ❙
15 associative = … ❙
16 e_neutral = … ❙
17 ❚

The morphism translates every monoid to its opposite monoid. We posit that many
analogies can in fact be expressed by such a morphism in MMT. For example, a com-
pletely analogous construction with a formalization of categories allows precise definition
and exploitation of dualities.

3.2. Theory- and Diagram-level Generalizations
Having seen that morphisms are specializations or dually generalization maps, we can
directly state what it means to generalize a theory:

Definition 3.2.1. We call a theory 𝐺 a theory-level generalization of a theory
𝑇 if there is a specialization morphism 𝑔 ∶ 𝐺 ⇝ 𝑇 .

A theory-level generalization principle is a partial algorithm accepting 𝑇
and outputting (𝐺, 𝑔).

We have already seen representative examples in the previous section. For an example
in a completely different spirit, we defer the reader to Chapter 5, where our running
example generalizes a formal specification of a sorting algorithm.

Some generalization methods might have multiple theories and morphisms as input
and/or have them as output. The principle of Theory Splitting, which we describe
in Chapter 4, can disperse declarations of a single theory onto multiple theories (Fig-
ures 3.1a and 3.1b). In categorical tonus, these methods are acting on diagrams in the
category 𝕋𝕙𝕪 of theories and theory morphisms. To define a diagram-level generaliza-
tion, we lift the specialization morphism from the previous definition to a specialization
functor and require on top some commutation properties:
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Definition 3.2.2. Let Δ𝑇 ∶ 𝒟𝑇 → 𝕋𝕙𝕪 be a diagram. We call another diagram
Δ𝐺 ∶ 𝒟𝐺 → 𝕋𝕙𝕪 a diagram-level generalization if there is a specialization
functor 𝐹 ∶ 𝒟𝑇 → 𝒟𝐺 and a natural transformation 𝜂 ∶ 𝐷𝑇 → 𝐷𝐺 ∘ 𝐹 .

A diagram-level generalization principle is a partial algorithm accepting Δ𝑇
and outputting (Δ𝐺, (𝐹 , 𝜂)).

Let us describe the definition by viewing the just mentioned principle of Theory Split-
ting in light of it. Recall Figures 3.1a and 3.1b showing the initial single-theory and the
refactored diagram. The functor is supposed to provide a scheme translation between
the more general diagram Δ𝐺 and the original diagram Δ𝑇 . In our case of dispersed
theories, the specialization functor identifies all theories again (Figure 3.1c).
However, this does not yet guarantee that the theories 𝐺1−4 are in fact a theory-level
generalization of the theory 𝑇 they are mapped to. This is why we require a natural
transformation, which provides us two crucial aspects:

• On the one hand, it ensures what was said, i.e. it strengthens the mapping of the
functor with providing morphisms, which are evidence for theory-level generaliza-
tions.

• On the other hand, being a natural transformation, it guarantees a strong com-
mutation property, namely that going along those theory-level specializations and
going along morphisms in the individual diagrams commutes.
A specific instance of this property in our case can be seen in Figure 3.1d. Let us
denote the morphisms from that figure by 𝑔1,𝑇 ∶ 𝐺1 ⇝ 𝑇 and 𝑔4,𝑇 ∶ 𝐺4 ⇝ 𝑇 . Then
we realize that the commutation is equivalent to 𝑔4,𝑇 |𝐺1

= 𝑔1,𝑇 . Put differently,
the specializations in our case are limited insofar that they need to inherit special-
izations performed on ”parental” theories.
The general case of enforced commutation independent of Theory Splitting can
be seen in Figure 3.2.

Unification of Concepts It might strike the reader that theory- and diagram-level
generalizations share no syntactical resemblance in their definition. Therefore, we try to
make it plausible that they indeed describe the same concept instantiated on different
levels and start with a basic result:

Lemma 3.2.1. Let 𝑔 ∶ 𝐺 ⇝ 𝑇 be a theory-level generalization. Then Δ𝐺 ∶=
{𝐺, 𝑖𝑑𝐺} is a diagram-level generalization of Δ𝑇 ∶= {𝑇 , 𝑖𝑑𝑇}.

Proof. Take the functor with 𝐹𝐺 ∶= 𝑇 , 𝐹𝑖𝑑𝐺 = 𝑖𝑑𝑇 and the natural transformation
with 𝜂𝐺 ∶= 𝑔.
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𝑇
(a) Initial diagram Δ𝑇 consisting of a single

theory

𝐺1

𝐺2 𝐺3 𝐺4

(b) Refactored diagram Δ𝐺 by dispersing 𝑇
onto 𝐺1−4

𝐺1 𝑇

𝐺2 𝐺3 𝐺4

Δ𝐺 Δ𝑇

(c) Justification of the refactoring being a
diagram-level generalization according
to Definition 3.2.2. The red arrows both
denote the mapping of the functor and
the components of the natural transfor-
mation.

𝐺1 𝑇

𝐺4 𝑇
𝑖𝑑𝑇

(d) One exemplary commutation property
ensured by the natural transformation.

Figure 3.1.: Diagram-level generalizations for Theory Splitting

𝐺 𝐹𝐺

𝐺′ 𝐹𝐺′

𝜎

𝜂𝐺

𝐹𝜎
𝜂𝐺′

Figure 3.2.: Commutation property of the natural transformation for all 𝜎 ∈ Δ𝐺
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Since a formal relationship between both definitions is not needed in the rest of the
thesis and for the sake of notational brevity, we switch to a very informal context to
describe their “skeletal” equivalence. Overall, our strategy is to first inspect theory-level
generalizations by unravelling the definition of a (well-typed) morphism. Then, we will
extrapolate the gained skeleton to declarations and see that the definition of diagram-
level generalizations we provided sensibly fits the family. Hence, let 𝑔 ∶ 𝐺 ⇝ 𝑇 be a
well-typed morphism, then 𝑔 and as such the theory-level generalization along 𝑔 consist
of three ingredients [RK13]:

• a raw mapping: a mapping from 𝐺-symbols to 𝑇 -expressions

• a well-typedness condition: especially for all constants (𝑐 ∶ 𝐸) ∈ 𝐺 that ⊢𝑇 𝑔(𝑐) ∶ ̄𝑔(𝐸)

• a homomorphicity condition: the morphism must be a homomorphism wrt. definienses.
Concretely, for every defined constants (𝑐 ∶ 𝐸 = 𝑒) ∈ 𝐺 we require ⊢𝑆 𝑔(𝑐) =
̄𝑔(𝑐)∶ ̄𝑔(𝐸)

In a similar vein and just for the sake of this paragraph, we define declaration-level
generalizations as being made up of

• a raw mapping: two declarations 𝛿′ and 𝛿, where 𝛿′ is the supposed generalization,

• a well-typedness condition: ⊢𝑇 𝐸′ = 𝐸, and

• an empty homomorphicity condition.

We can now identify the common skeleton, namely declaration- and theory-level gen-
eralizations both consist of a) a raw mapping of the next lower-level entities, b) the
requirement of those mappings being generalizations in the next lower-level context,
and c) a homomorphicity condition. Definition 3.2.2 of diagram-level generalizations
indeed fits this pattern: The raw mapping on theories and morphisms is given by the
functor. The generalization condition on morphisms is vacuous, while the one on theories
is given by the components of the natural transformation. Finally, the homomorphicity
condition can be taken as the very commutation requirements enforced by the natural
transformation.

3.3. Behavior Preservation
Commonly, refactorings are defined as actions making code easier to understand while
preserving behavior [Opd92; Fow+99]. So far we have defined the overall type of these
actions in our setting, namely as generalizations, but have not given a definition of
behavior preservation yet. Hence, in this section we strive to give such initial definitions
for theory- and diagram-level generalizations. We note that they are likely to be subject
to change in the future primarily because the authors devised them only very recently
before submission deadline. Additionally, their applicability on further principles than
the ones presented in this thesis needs to be evaluated.
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3.3. Behavior Preservation

Intuitively, we want to call a generalized theory 𝐺 of 𝑇 via some morphism 𝐺 ⇝ 𝑇
behavior-preserving if no “information” is lost, but possibly only added. Furthermore,
as we see our work particularly in the realm of mathematics, such information should es-
pecially include derivable theorems. Hence, a first attempt would require the deduction
closure of 𝑇 to be contained in 𝐺, i.e. 𝐺 is behavior-preserving iff. all 𝑇 -derivable-
theorems are also derivable in 𝐺. However, in general we cannot even expect the state-
ments of those 𝑇 -theorems3 to be well-formed 𝐺-expressions. For example, in Section 5.1
we will generalize the merge sort algorithm on lists over natural numbers (being 𝑇 ) to
lists whose entries are sorted by an arbitrary total order (𝐺). There we realize that the
𝑇 -provable statement ⊢ sort [1, 2, 3] ≐ [1, 2, 3] cannot be expressed in 𝐺, simply
due to the fact that 𝐺 does neither include nor define natural numbers.

Fortunately, we can salvage our attempt while still retaining a notion similar to deduc-
tion closure. Recall that MMT morphisms are truth-preserving (cf. Corollary 2.1.0.1),
i.e. the image of a theorem under a morphism is again a theorem. Especially, the proof
is given as the image of the original proof. Now given a 𝑇 -theorem, instead of requiring
the potentially impossible rederivation in 𝐺, we require the existence of a preimage wrt.
the considered specialization morphism4. Hence, by virtue of the morphism we can con-
clude the well-typedness and an approximate rederivability property of the 𝑇 -theorem.
Formally, we define this as follows:

Definition 3.3.1 ((Strong) Behavior Preservation). Let 𝑇 be a theory. A gener-
alization (𝐺, 𝜂) with 𝑔 ∶ 𝐺 ⇝ 𝑇 is called behavior preserving iff.

𝑇 ⊆ 𝑔(Obj(𝐺))

where Obj(𝐺) denotes all closed and well-typed 𝐺-expressions and the subset rela-
tion is to be taken as follows: for every (𝑐 ∶ 𝐸[= 𝑒]) ∈ 𝑇 ♭ either 𝑐 ∈ 𝑔(Obj(𝐺)) or
𝑒 ∈ 𝑔(Obj(𝐺)).a

aIf the first condition does not apply, this especially means that 𝑐 must have definiens 𝑒.

In a bold and sloppy way, the definiton can be stated as 𝑇 ⊆ 𝑔(𝐺).

Example 3.3.1. Let 𝑅 ↪ 𝑆. If 𝑆 only contains defined constants, then 𝑅 is a
behavior-preserving generalization of 𝑅 wrt. that inclusion. If on the other hand 𝑆
contains at least one undefined constant, then we do not have behavior preservation.
Indeed, this matches the intuition that defined constants do not provide any new
information and thus can be safely dropped when behavior preservation one’s only
concern.

3Their type (propositions-as-types)
4Note that a generalization always encompasses three entities, namely 𝐺, 𝑇 and some specialization

morphism 𝐺 ⇝ 𝑇 .
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3. Framework for Generalization Refactorings

We can conclude that the act of deleting constants from a theory is in general not
behavior-preserving. Still, we imagine the usefulness of this action and list it in the
next section under the name Theory Shrinking as a possible future generalization
principle.

We believe that this definition is still too strong. Namely, there are cases where
preimages wrt. 𝑔 exist only up to some equational theory, i.e. instead of 𝑇 ⊆ 𝑔(Obj(𝐺))
we should consider the requirement with some closure: 𝑇 ⊆ cl(𝑔(Obj(𝐺))). Further,
we suppose that this closure shall encompass 𝛼𝛽𝜂-equality, equality resulting from 𝑇 -
theorems, and proof irrelevance. We refer to Appendix A.1 for an example portraying
groups axiomatized on the one hand via multiplication as usual and on the other hand
via division. They are both behavior-preserving generalizations of each other precisely
if one argues modulo the just mentioned equational theory. We remark that doing the
naïve closure might allow for circular reasoning of behavior preservation. Therefore and
for the reason that the principles in the present thesis are already behavior preserving
in the strong sense, we defer further investigation to future work.

Finally, we extend the definition straightforwardly to diagram-level generalizations:

Definition 3.3.2 ((Strong) Behavior Preservation on Diagrams). Let Δ𝑇 be a
diagram. A diagram-level generalization (Δ𝐺, (𝐹 , 𝜂)) is called behavior-preserving
iff. all theories in Δ𝑇 can be covered by some theory-level behavior-preserving
generalizations.

With the definition above, this formally means that for every 𝑇 ∈ Δ𝑇 we require
the existence of theories 𝐺1,… ,𝐺𝑛 ∈ Δ𝐺

a such that

𝑇 ⊆ ⋃
𝑖
𝜂𝐺𝑖

(Obj(𝐺𝑖))

awhere 𝑛 may depend on 𝑇 .

Concerning both definitions, for practical reasons it might be useful say that a theory
(diagram) is only behavior-preserving generalization in subsets of another theory (dia-
gram). For example, Topology is a behavior-preserving generalization of MetricSpace
not overall, but in its continuity definition – again with some unspecified equational
theory in mind.

3.4. Overview of Generalization Principles

Having defined what generalization principles are, we now shortly list some principles
the authors have in mind in the table below. The two principles elaborated in the present
thesis are highlighted with gray background color.
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3.4. Overview of Generalization Principles

specific to
Foundation Logic

Diagram-level Theory Splitting
Theory-level App-Gen ×

Theory Shrinking
Symbol Splitting
Abstraction of Repeated Subterm
Patterns

×

Declaration-level Identification of Bound Variables × ×
Increase/Decrease of a Function’s
Arity

×

Reordering of Existential Quanti-
fiers

× ×

We structure the principles in two dimensions. First, we can group principles into the
level they are working on, i.e. declarations, theories or diagrams. Second, we can inspect
their dependence on specific foundations or logics. For example, App-Gen depends on
lambda abstractions and is thus dependent on the LF foundation, however, it is not
dependent on a specific logic or calculus of natural deduction. In contrast, to be able to
identify bound variables, we must talk about ∀ quantifiers making us depend on specific
logics.
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4. Theory Splitting

As known from software engineering, cohesion within structuring elements in program-
ming languages, such as classes, modules or namespaces, is a key quality measure of
source code [Ing18]. We claim the same holds true for theories in knowledge represen-
tation systems and suggest a decomposition method for them, which happens to be a
behavior-preserving diagram-level generalization. It takes a single theory, a partition
on its declarations and then splits (reorganizes) the theory’s declarations according to
the partition to generate a bunch of new theories. Finally, the created diagram of new
theories is output. Certainly, during the whole process we have to respect declaration in-
terdependencies, especially theories in the output diagram need to be sensibly connected
by inclusions. We will detail this discussion in this chapter, but let us first shortly outline
why we consider Theory Splitting to be a useful refactoring principle.

We have already detailled in Chapter 2 on related work that actions to reorganize
large classes are established refactorings in software engineering. This alone already mo-
tivates having a counterpart in formal knowledge representation systems. We can draw
further motivation exemplarily from the fact that the popular HOL Light theorem prover
[Har09], which is designed to be minimalistic wrt. MKM, has no structuring elements
serving the role of theories.1 Additionally, HOL Light has been exported to multiple
other formal systems such as Coq, Hets and MMT [Wie02; MML07; KR14]. Thus, we
could apply Theory Splitting on the exported MMT documents. In particular, this
would be appealing if we had an automated way to intelligently perform our principle
on large documents, which we defer to future work. Last but not least, this principle
also serves as an exemplary behavior-preserving generalization principle to support our
theoretical framework.

Structure of the Chapter Section 4.1 guides the reader through an example of splitting
to the formal definition of Theory Splitting. Section 4.2 gives formal proofs on it
outputting well-typed behavior-preserving generalized diagrams in terms of our overall
framework.

1Having heard this claim in personal communications, we could not find a definite reference for it.
However at time of writing, a strong indicator can be found in the files of the standard library,
which bear no (computer-readable) structuring at all: https://github.com/jrh13/hol-light/tree/
013324af7ff715346383fb963d323138cf011732
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4. Theory Splitting

1 theory Monoid =
2 U: type ❙
3 e: U ❙
4 op: U ⟶ U ⟶ U ❘ # #1 ∘ #2 ❙
5 associative: ⊦ ∀ [a: U] ∀ [b: U] ∀ [c: U] (a ∘ b) ∘ c ≐ a ∘ (b ∘ c) ❙
6

7 neutral: U ⟶ prop ❘ = [e'] ∀ [a: U] (a ∘ e' ≐ a) ∧ (e' ∘ a = a) ❙
8 e_neutral: ⊦ neutral e ❙
9 e_unique: ⊦ ∀ [e': U] (neutral e') ⟹ e' ≐ e

10 ❘ = sketch "omitted proof ❙
11

12 power: U ⟶ ℕ ⟶ U ❘ # #1 ^ #2 ❙
13 thm_power: ⊦ ∀ [a: U] ∀ [n: ℕ] ∀ [m: ℕ] a ^ (n + m) ≐ (a ^ n) ∘ (a ^ m)
14 ❘ = sketch "omitted proof" ❙
15

16 /T … further (general) monoid declarations … ❙
17

18 commutative: ⊦ ∀ [a: U] ∀ [b: U] a ∘ b ≐ b ∘ a ❙
19 /T … further declarations (esp. theorems) based on commutative … ❙
20 ❚

Figure 4.1.: A theory of commutative monoids to be split

4.1. Towards a Definition by Example
Consider a drafted formalization of commutative monoids and monoids in general in
Figure 4.1. As already said, valid partitions on the declarations of a theory need to
respect its declaration interdependencies. Hence, recall the dependency partial order
≤𝑇 on declarations we introduced in Definition 2.2.2. For example, we have 𝑈 ≤𝑇 𝑒
and 𝑜𝑝 ≤𝑇 associative. It turns out that it is conceptionally easier to think in term of
its equivalent graph representation instead. Indeed, we can express every partial order
equivalently as a transitively reduced directed acyclic graph (DAG). The corresponding
graph for our formalization is shown as part of Figure 4.2. Whenever we have an edge
𝛿 → 𝛿′, we have a dependency 𝛿 ≤𝑇 𝛿′. We now want to give a partition on that graph
which sensibly splits our theory of monoids.

A First Split To describe a first sensible (and valid) split, let us first note a few things
about the graph. We drawed additional dummy dependencies in the graph which serve
to hopefully illustrate the following property which we believe a truly representative
graph for a theory of commutative and general monoids would have. Namely, it would
have one subgraph for the theory of general monoids and one subgraph for commutative
monoids only such that there are many edges from the former to the latter, but none
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4.1. Towards a Definition by Example

in the other way. Very similar to Extract Subclass from software engineering, this
motivates moving the “child” of commutative monoids into its own theories. In other
words, we should split the theory by exactly those two subgraphs into two new theories
such that the theory for the commutative part would include the general theory. The
code after the (yet informal) split is shown in Figure 4.3.

Note how we needed to account for an inclusion after the “raw splitting” as such. The
underlying reason was that there was at least one dependency from a symbol within
the commutative monoid part on a symbol within the general monoid part. Thus, the
commutative part as a whole is dependent on the general part as a whole. We will make
this precise below. Additionally, realize that it would be erroneous to have a dependency
in the other way on top precisely for the reason that two theories in MMT cannot include
each other.2 This restriction will amount to a validity condition on partitions we require
for spitting.

Figure 4.2.: Dependency DAG for the theory of monoids from Figure 4.1 with an overlaid
suggested decomposition.

The Definitional Pipeline We now give a precise definition for Theory Splitting.
Overall, it will encompass the following pipeline visualizing our approach, which we

2While this was a sensible design choice for MMT with inclusions, other encapsulation notions in
other systems might call for a relaxation of the cyclefreeness requirement. For example, in C++ a
namespace can be spread over multiple interdependent files, given that one uses forward declarations
for such interdependencies.
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4. Theory Splitting

22 theory GeneralMonoid =
23 U: type ❙
24 e: U ❙
25 op: U ⟶ U ⟶ U ❘ # #1 ∘ #2 ❙
26 associative: ⊦ ∀ [a: U] ∀ [b: U] ∀ [c: U] (a ∘ b) ∘ c ≐ a ∘ (b ∘ c) ❙
27

28 neutral: U ⟶ prop ❘ = [e'] ∀ [a: U] (a ∘ e' ≐ a) ∧ (e' ∘ a = a) ❙
29 e_neutral: ⊦ neutral e ❙
30 e_unique: ⊦ ∀ [e': U] (neutral e') ⟹ e' ≐ e
31 ❘ = sketch "omitted proof ❙
32

33 power: U ⟶ ℕ ⟶ U ❘ # #1 ^ #2 ❙
34 thm_power: ⊦ ∀ [a: U] ∀ [n: ℕ] ∀ [m: ℕ] a ^ (n + m) ≐ (a ^ n) ∘ (a ^ m)
35 ❘ = sketch "omitted proof" ❙
36

37 /T … further (general) monoid declarations … ❙
38 ❚
39

40 theory CommutativeMonoid =
41 include ?GeneralMonoid ❙
42

43 commutative: ⊦ ∀ [a: U] ∀ [b: U] a ∘ b ≐ b ∘ a ❙
44 /T … further declarations (esp. theorems) based on commutative … ❙
45 ❚

Figure 4.3.: Split theories of general and commutative monoids
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4.1. Towards a Definition by Example

already informally traversed in the previous paragraphs. Concretely, the interpretation
amounts to adding those inclusions we discussed above. Every step will be given a formal
definition below.

Theory 𝑇 Diagram Δ

DAG 𝐺≤𝑇
𝐺≤𝑇

/∼ 𝐺′partition ∼ transitive reduction

interpretation

We start by formally defining the

Definition 4.1.1 (Dependency DAG). For a theory 𝑇 , let 𝐺≤𝑇
be the reflexive-

transitively reduced graph representation of ≤𝑇 . By convention, an edge 𝛿 → 𝛿′
stands for the dependency 𝛿 ≤𝑇 𝛿′ in that “forward” direction.

Having the dependency graph, we can now apply a partition:

Definition 4.1.2 (Quotient Graphs & Cyclefreeness). Let 𝐺 = (𝑉 ,𝐸) be a graph
and a partition on 𝑉 be given, inducing the equivalence relation ∼. We define the
quotient graph 𝐺/∼ as consisting of

• vertex set 𝑉 ′ ∶= 𝑉 /∼, and

• edge set 𝐸′ ∶= {([𝑢]∼, [𝑣]∼) | (𝑢, 𝑣) ∈ 𝐸}.

We call a partition for a graph cyclefree iff. the resulting quotient graph is
cyclefree (except for trivial self-cycles).

We summarize the last two steps directly in the definition of the principle itself:

Definition 4.1.3 (Theory Splitting). • Input: A theory 𝑇 and a cyclefree
partition represented by its equivalence ∼

• Action: Build the reflexive-transitively reduced version of 𝐺≤𝑇
/∼ and then

interpret it as a diagram in 𝕋𝕙𝕪 as follows:
Every vertex is interpreted as an anonymous theory with the collected dec-
larations as its contents together with inclusions as follows: for every direct
predecessor vertex, include the interpretation thereof.

• Output:
– The interpreted diagram
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4. Theory Splitting

– A specialization functor detailled below in Lemma 4.2.2

The reflexive reduction of 𝐺≤𝑇
/∼ is supposed to prevent self-inclusions in the interpre-

tation afterwards. To see the desire for transitive reduction as well, again consider our
monoid formalization with its DAG in Figure 4.2. Another sensible, finer split is depicted
in Figure 4.4. It splits into a core theory of monoids, a theory of general monoid facts
building on top, and a theory of commutative monoids. In that case, we would build the-
ories CoreMonoid, GeneralMonoid, and CommutativeMonoid. Now without the transitive
reduction of 𝐺≤𝑇

/∼, we would have inclusions of both CoreMonoid and GeneralMonoid
in CommutativeMonoid. While we have them both anyway as 𝕋𝕙𝕪 as a category respects
composition, the former is redundant in concrete formalization code. Hence, transitive
reduction is supposed to throw it away.

Figure 4.4.: An alternative, finer split for the theory of commutative monoids

Extreme Cases of Splitting There are two extreme cases of Theory Splitting:

(i) Empty split: By means of the “full” equivalence relation on the declarations of
a theory 𝑇 , i.e. 𝛿 ∼ 𝛿′ for all 𝛿, 𝛿′ ∈ 𝑇 , Theory Splitting only produces one
output theory, namely 𝑇 itself. Thus, the splitting was actually a no-op and thus
useless.

(ii) Full split: By means of the smallest possible equivalence relation, i.e. the diagonal,
Theory Splitting disperses the declarations to individual singleton theories3

3Apart from inclusions induced by interpretation, these theories only contain one declaration.
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Although there are systems advocating the use of such tiny theories [Car+11], this
approach hinders usability since the theory graph is cluttered with theories, which
are mostly uninteresting to a mathematician. For instance, imagine the axioms of
a vectorspace being separated into, say, ≥ 8 tiny theories.

Hence, splits need either be selected manually by a human or good heuristics need to be
developed accounting for careful splitting strategies. We leave the investigation of the
latter, especially in the realm of MKM, to future work and refer to Section 2.3 having
shown related work in the area of software engineering.

4.2. Validity and Behavior Preservation
In this section we prove that Theory Splitting is in fact a behavior-preserving gener-
alization principle within our framework. First, let us convince ourselves that the output
diagram is in fact well-typed:

Lemma 4.2.1 (Validity of Theory Splitting). Let 𝑇 be a theory and a cyclefree
partition be given. The corresponding theory split produces a well-typed diagram.

Proof. Since we start with a well-typed theory by convention, it suffices to show

(i) The resulting diagram contains no cycles.

(ii) For every theory 𝑅 in the diagram, every contained declaration 𝛿 ∈ 𝑅 and every
dependency 𝛿′ <𝑇 𝛿:
𝛿′ is “accessible” (in scope) at the location of the final placement of 𝛿. That is,
𝛿′ ∈ 𝑅 or it stems from a transitively included theory in 𝑅.

ad (i): Per assumption of cyclefreeness of the partition.
ad (ii): By the very notion of quotiening, there are vertices 𝑢, 𝑣 of the final theory split,
so that 𝛿′ ∈ 𝑢 and 𝛿 ∈ 𝑣, where 𝑅 is the theory interpretation of 𝑣. In case of 𝑢 = 𝑣 we
are done, in case of 𝑢 ≠ 𝑣 we have the edge 𝑢 → 𝑣 retained from the initial dependence.
Hence 𝑅 includes the theory interpretation of 𝑢.

In Chapter 3 we have already motivated diagram-level generalizations by the principle
of Theory Splitting. Recall Figure 3.1c presenting a split diagram on the left and
identifying its theories to the original theory 𝑇 . Let us now formally state and prove
this generalization proprety:

Lemma 4.2.2 (Theory Splitting being a Generalization). Let 𝑇 be a theory and
a cyclefree partition be given. The output theory-split diagram Δ𝐺 is a diagram-level
generalization of the trivial diagram Δ𝑇 containing 𝑇 .
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4. Theory Splitting

Proof. Use the constant functor 𝐹 ∶ Δ𝐺 → Δ𝑇 with 𝐹𝐺 ∶= 𝑇 and the “embedding-
like” natural transformation given by (𝜂𝐺 ∶ 𝐺 ⇝ 𝑇)𝐺∈Δ𝐺

, which sends every declaration
𝛿 ∈ 𝐺 to its original counterpart ‶𝛿" ∈ 𝑇 . Note that those are formally not the same
declaration, but rather copies of each other, which we denote on the present meta level
with the same symbol.

Having convined ourselves of Theory Splitting outputting well-typed general-
ized diagrams, we can also assert its behavior preservation, which is due to the fact
that no declarations are thrown away. Hence, the morphism-induced closure is unaf-
fected.

Lemma 4.2.3 (Behavior Preservation of Theory Splitting). Let 𝑇 be a theory
and a cyclefree partition be given. The output theory-split diagram Δ𝐺 is behavior-
preserving generalization of the initial trivial diagram Δ𝑇 containing 𝑇 wrt. to the
functor and natural transformation given in Lemma 4.2.2.

Proof. Every declaration of 𝑇 is covered by (at least4) one theory in Δ𝐺, whose im-
age under the specialization morphism from the natural transformation then covers the
declaration itself in 𝑇 as well.

4In the theory it appears the first time and in all theories including that theory
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5. App-Gen: Application of Existing
Generalization

In this chapter we explore how existing (theory-level) generalizations can be exploited
to come up with new generalizations. Suppose we have a theory 𝑆 and a more general
theory 𝑅 witnessed by a morphism 𝑅 ⇝ 𝑆. Let 𝑇 be a theory using 𝑆 by means of an
inclusion 𝑆 ↪ 𝑇 .1 The central question now is: Can we find a generalization 𝐺 of 𝑇
such that 𝐺 now includes 𝑅 instead of 𝑆? Pictorially, we can phrase this as follows:

𝑅 𝑆

𝐺 𝑇
	

Throughout the chapter such diagrams are assumed to commute. Additionally, by means
of underlined objects and dotted morphisms we indicate that those entities are created
from the remaining ones by the very action we consider in the specific context.

Put differently, we would like to investigate when and how an inclusion can be gener-
alized and how declarations can be most sensibly carried over. Of course, the problem
admits trivial solutions by choosing 𝐺 ∈ {𝑅, 𝑆, 𝑇}. We leave defining the precise prob-
lem statement ruling out such unwanted solutions to future work.2 Instead, we derive
a syntatical generalization algorithm App-Gen which tries to compute 𝐺 by going over
every declaration in 𝑇 .

We consider the action of creating 𝐺 to be a refactoring for two reasons. First, having
a more general theory and its linkage to the old concrete one widens the induced knowl-
edge space, which allows (proof) reuse and enhances data analytics operations from the
Mathematical Knowledge Management discipline. Second, the generalization as such
can be useful for the user. For example, 𝐺 might contain more general mathemati-
cal identities, which followed by abstracting the dependence on 𝑆-expressions in 𝑇 to
corresponding 𝑅-expressions. Alternatively, in the realm of formal specifications with
program extraction, 𝑇 might be the formalization of a particular library class whose
generalization 𝐺 can be imagined as a “generified/templated” version of 𝑇 .

Apart from the refactoring motive, there are two more reasons we can imagine. On the
one hand, in some circumstances, theorems, which are known to be provable in the more
general 𝑅-setting, can be more easily proven in the more concrete, and hence possibly

1Other possibilities of 𝑆 being used are nested theories, where the inner theory 𝑇 accesses the outer
𝑆, and implicit morphisms 𝑆 ⇝ 𝑇 .

2Possibly, the problem can be formulated with categorical semantics, which we will hint at in Section 5.4.
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5. App-Gen: Application of Existing Generalization

more comfortable 𝑆-setting. If the user now formalizes their proof in 𝑇 , chances are
that the proof can be generalized by App-Gen to a proof of the more general theorem.3
On the other hand, playing with the notions of (syntactic) generalizability could be a
learning resource for students. We detail our early ideas in that direction in Chapter 7.

Structure of the Remaining Chapter Section 5.1 introduces our running example and
guides the reader from the conceptual notion of applying a generalization up to a first
formal definition of such an algorithm. Section 5.2 motivates a revision thereof to allow
for more complex scenarios. Some additional examples are presented in Section 5.3,
after which Section 5.4 concludes the chapter with showing a possible interpretation of
our principle from a categorical point of view and showcasing other related categorical
constructions.

5.1. App-Gen-0: A First Version
To introduce our running example and to explain what we mean by “application of
existing generalization”, we start off with a made-up quote describing both things on
their conceptual level:

Runninng Example (Conceptual)

“Conceptionally, merge sort on lists of natural numbers generalizes to merge sort
on lists on arbitrary totally ordered sets (tosets).”

We expect the reader to comprehend the example from a generic mathematician’s or
computer scientist’s point of view, and to maybe even have a few ideas on which prop-
erties of the merge sort algorithm on ℕ are responsible for making the above statement
true. With these assumptions, we devote this section to examining the quote and trans-
lating every conceptual idea to a rigid formal definition within the MMT framework. At
the end of this section, the reader should have an idea how such implicit generalizability
and generalization can be made explicit in terms of knowledge representation systems.

First we note that the quote asserts generalizability without making the act of gener-
alization explicit. We will see that it suffices to understand the latter to acknowledge the
former. Hence, as a first approximation, let us structure the action happening behind
the scenes on an informal level, see the list below. In every step we distinguish the
abstract action from its incarnation in the concrete, albeit still conceptual merge sort
setting.

1. Given a concept 𝑇 , look for ingredients of it,
𝑇 being merge sort on lists of natural numbers

2. and choose one ingredient 𝑆.
𝑆 being the entry type (natural numbers)

3We refer to the example of sequences and nets in Section 5.3.
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5.1. App-Gen-0: A First Version

3. Look at possible generalizations of 𝑆,
Group, countable set, toset, …

4. choose one generalization 𝑅,
𝑅 being natural numbers forming

a totally ordered set wrt. their standard ordering

5. and try generalizing 𝑇 wrt. 𝑅 to form the new concept 𝐺.
merge sort on lists of totally ordered entries

In other words we might say that in step 5 we apply the existing generalization from step
4 to the concept chosen in step 1. Concretely, we apply the generalization that natural
numbers form a toset in the obvious way, to the concept of merge sort on lists of natural
numbers. This viewpoint gave App-Gen its name.

Before we try to formalize the steps in MMT tonus, let us emphasize one crucial
aspect: The generalization in step 4 encompasses the more general concept 𝑅 and the
instantiation to get 𝑆 again. Indeed, the natural numbers admit specializations of tosets
in various ways, the standard ordering ≤ is just the most common one. Hence, it is
important to state the more general concept together with the way it is incarnated in
the concrete concept. Likewise, the newly created concept 𝐺 from step 5 refers to itself
and a specific instantiation as well.

Let us now translate the above list to MMT: concepts become theories, ingredients
become inclusions and generalizations are represented by morphisms (cf. Chapter 3),
thus especially as a triple consisting of their domain, their codomain and their actual
mapping:

1. Given a theory 𝑇 , look for included theories,
𝑇 = MergeOnNat

2. and choose one (transitively) included theory 𝑆.
𝑆 = Nat

3. Look at incoming morphisms to 𝑆,
Group ⇝ Nat, CountableSet ⇝ 𝑁𝑎𝑡, Toset ⇝ Nat, …

4. choose one morphism 𝜑∶ 𝑅 ⇝ 𝑆
𝜑∶ Toset ⇝ Nat with

𝜑(𝑋) = ℕ, 𝜑(≤𝑥) = ≤

5. and try generalizing 𝑇 wrt. 𝜑 to form the new theory 𝐺
including 𝑇 together with a morphism 𝑔 ∶ 𝐺 ⇝ 𝑇 .

𝐺 = MergeOnToset

We will introduce the theories and morphisms mentioned in the list above on our way
developing App-Gen. The avid reader might peek at corresponding formalizations in
MMT surface syntax in Figures 5.2a and 5.2b.
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Recall that we assume generalization principles be triggered manually by users and
leave automatic batch processing to future work (cf. Chapter 7). Indeed, the steps, or
rather inputs, 1 – 4 are exactly the inputs our principle App-Gen requires. However,
as step 5 on its own can already be a highly complicated task for a mathematician on
the conceptual level, we restrict ourselves to a manageable subset of purely syntactical
generalizations. Fortunately, as we will see, the desired merge sort generalization is
purely syntactical. We hope the reader gets an intuition about the manageable subset
by reading this and the next section. By sticking to the running example, the remaining
part of this section develops an initial algorithm for step 5.

Step 5 of Generalization In Detail Let us reiterate the current task we are trying to
solve. Given theories 𝑅, 𝑆 and 𝑇 with 𝑆 ↪ 𝑇 and a morphism 𝜑∶ 𝑅 ⇝ 𝑆, we seek a
generalization 𝑔 ∶ 𝐺 ⇝ 𝑇 such that 𝑅 ↪ 𝐺 and the commutation depicted in Figure 5.1a
holds. In terms of the running example, we are seeking MergeOnToset as in Figure 5.1b.

𝑅 𝑆

𝐺 𝑇

𝜑

𝑔

(a) The current abstract setting

Toset Nat

MergeOnToset MergeOnNat

𝜑

𝑔

(b) The current concrete setting

Figure 5.1.: The setting of the current task, both in abstract terms and in terms of the
running example

Let us perform the act of generalization on concrete formalizations of the above en-
tities and then extrapolate a general algorithm. For that consider the formalizations in
Figures 5.2a and 5.2b. By close inspection, it is easy to verify that the following does
the job of creating a well-typed generalized theory MergeOnToset

1. Copy the theory MergeOnNat to a new theory MergeOnToset,

2. replace the inclusion of 𝑁𝑎𝑡 by an inclusion of Toset,

3. and finally change every occurrence of ℕ and ≤ to 𝑋 and ≤𝑥, respectively.

We realize the replacements in step 3 are given by the very morphism mapping 𝜑 read
backwards (cf. Figure 5.2b). Indeed, the meaning of 𝑋 ↦ ℕ via 𝜑 is that in the specific
case of natural numbers, the toset is given by ℕ. Thus, to no longer rely on that specific
case, we shall simply replace ℕ by 𝑋. Analogous considerations hold for ≤𝑥 ↦ ≤.
Indeed, such link inversion is typically the right thing to do for generalizing theories as
examples in Section 5.3 will make plausible as well.

To bridge to the formal world, we modify two things of the above 3-step-procedure to
enable an easier framework. First, we favor an iterative procedure over step 1, which pro-
duces the generalized theory declaration-by-declaration and component-by-component.
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9 theory Nat =
10 ℕ: type ❙
11 zero: ℕ ❙
12 succ: ℕ ❙
13 add: ℕ ⟶ ℕ ⟶ ℕ ❘ = … ❙
14 ≤: ℕ ⟶ ℕ ⟶ prop ❘ = …❙
15 ❚
16

17 theory MergeOnNat =
18 include ?Nat ❙
19 include ?PolymorphicLists ❙ /T Some imaginary theory of finite lists ❙
20

21 /T Merge two pre-sorted lists ❙
22 merge: List ℕ ⟶ List ℕ ⟶ List ℕ ❙
23

24 /T Axioms on merge (≈ inductive definition) ❙
25 merge_base_case1: ⊦ ∀[l: List ℕ] merge nil l ≐ l ❙
26 merge_base_case2: ⊦ ∀[l: List ℕ] merge l nil ≐ l ❙
27 merge_ind_step: ⊦ ∀[x: ℕ] ∀[y: ℕ] ∀[xs: List ℕ] ∀[ys: List ℕ]
28 merge (cons x xs) (cons y ys) ≐
29 if (x ≤ y) cons x (merge xs (cons y ys))
30 else cons y (merge (cons x xs) ys) ❙
31

32 /T Sort a list ❙
33 mergesort: List ℕ ⟶ List ℕ ❙
34 mergesort_base_case: ⊦ mergesort nil ≐ nil ❙
35 mergesort_ind_step: ⊦ ∀[l: List ℕ] ∀[k: List ℕ]
36 mergesort (l ::: k) ≐ merge (mergesort l) (mergesort k) ❙
37 ❚

(a) Natural numbers and merge sort on lists over them (apparent by line 29)

Figure 5.2.: The running example: formalization of natural numbers, merge sort on lists
over them, and tosets
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39 theory Toset =
40 X: type ❙
41 ≤ₓ: X ⟶ X ⟶ prop ❙
42

43 ax_antisymmetry: ⊦ … ❙
44 ax_transivitivty: ⊦ … ❙
45 ax_connexity: ⊦ … ❙
46 ❚
47

48 view φ : Toset -> Nat =
49 X = ℕ ❙
50 ≤ₓ = ≤ ❙
51

52 /T Proofs of those properties being fulfilled in Nat ❙
53 ax_antisymmetry = … ❙
54 ax_transitivity = … ❙
55 ax_connexity = … ❙
56 ❚

(b) Tosets and their incarnation as natural numbrers expressing the fact that tosets are a gen-
eralization of natural numbers wrt. their standard ordering

Figure 5.2.: The running example: formalization of natural numbers, merge sort on lists
over them, and tosets (cont.)
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Second, in step 3 we instead consider rewrite rules on terms given by reading the mor-
phism mapping backwards. This finally leads to our first version of our “application of
existing generalization” (partial) algorithm, App-Gen-0, in Definition 5.1.1 below.

Definition 5.1.1 (App-Gen-0: A First Version). Let the theories 𝑅, 𝑆, 𝑇 , and
the morphism 𝜑∶ 𝑅 ⇝ 𝑆 be given. Build 𝐺 and 𝑔 ∶ 𝐺 ⇝ 𝑇 as follows:

𝑅 𝑆

𝐺 𝑇

𝜑

𝑔

1. Set 𝐺0 ∶= {include 𝑅}, 𝑔0 ∶= (include 𝑅 ↦ 𝜑)

2. In narrative order for every declaration 𝛿 ∈ 𝑇 do the following:
• In case of an inclusion include U: skip if 𝑈 = 𝑆, else adopt unchanged.
• In case of a constant declaration, try rewriting its type and possibly

definiens component using the following rules until it is an 𝐺𝑖−1-expression:
– For every (𝑐 ∶= 𝑐′) ∈ 𝜑:

𝑐′
𝑐 (5.1)

– For every successfully rewritten (𝑑′ ∶ 𝐷′[= ̂𝑑]) ∈ 𝐺𝑖−1 of (𝑑 ∶ 𝐷[=
̂𝑑]) ∈ 𝑇 :

𝑑
𝑑′ (5.2)

Let 𝛿′ denote the fully rewritten declaration with all its components, then
a) set 𝐺𝑖 ∶= 𝐺𝑖−1 ∪ 𝛿′,
b) and set 𝑔𝑖 ∶= 𝑔𝑖−1 ∪ (𝛿′ ↦ 𝛿),

Unfortunately, even if App-Gen-0 successfully rewrites every declaration, it might hap-
pen that the generalized theory is not well-typed. We leave finding suitable conditions
ensuring well-typedness to future work. However, once having well-typedness of the
generated theory, we can conclude more properties:

Lemma 5.1.1 (Validity of App-Gen-0 under Assumption of Well-Typedness). If
the theory 𝐺 generated by App-Gen-0 is well-typed, then the morphism 𝑔 ∶ 𝐺 ⇝ 𝑇
is well-typed as well and the square given in the algorithm definition commutes.

Proof. The well-typedness of the morphism directly follows from the rewrite procedure
as such, and the commutation is a direct result of the assignment 𝑔(include 𝑅) = 𝜑.
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Corollary 5.1.0.1 (Behavior Preservation of App-Gen-0). If the theory 𝐺 gener-
ated by App-Gen-0 is well-typed, then (𝐺, 𝑔) is a behavior-preserving generalization
of 𝑇 .

Proof. By construction, every 𝑇 -declaration is in the image of well-typed 𝑔.

Remark 5.1.1 (Termination and Rewrite Problems). In step 2 of App-Gen-0 we can
face non-terminating behavior due to oscillating rewrite rules and/or the problem
that declarations simply cannot be rewritten to an 𝐺𝑖−1-expression. We address
these issues in Section 6.2.3 on our implementations. In particular, we give a ter-
mination criterion there.

Observe that in case of our merge sort on lists of natural numbers, the algorithm is
able to successfully produce the expected merge sort on tosets, cf. the resulting code in
Appendix A.2.

We conclude with a bit of terminology we already made use of, but which can now be
stated formally.

Definition 5.1.2 (App-Gen Terminology). The following terminology applies to
App-Gen-0 and derivatives we develop in next sections:

• An expression or declaration is called generalizable wrt. App-Gen if it
survives step 2 of the algorithm above.

• By saying we generalize an expression, declaration or theory 𝑇 along
𝜑∶ 𝑅 ⇝ 𝑆 we mean the application of App-Gen on 𝑅, 𝑆, and 𝑇 . In case
of expressions, we assume the surrounding theory 𝑇 to be evident from the
context.

5.2. App-Gen-1: Generalizing App-Gen-0
In this section we show that even slight modifications of our running example’s setting
make the derived generalization algorithm fail. Consequently, we tackle a specific subset
of such problems by making the algorithm aware of more rewrite rules.

Imagine we wanted to still generalize MergeOnNat, but now wrt. Nat forming a
different toset, namely with the reversed standard ordering. That is, in the merge
sort code from Figure 5.2a the expression if (x ≤ y) shall generalize to if (y ≤ₓ
x). Employing App-Gen-0, an obvious first try would be to modify the specialization
morphism along we generalize such that we still have 𝑋 ↦ ℕ, but now ≤𝑥 ↦ ≥. For
didactic reasons let us for a moment assume that Nat neither has the ≥ symbol nor
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Toset Nat

MergeOnNat

𝜓

(a) The modified setting with the special-
ization morphism 𝜓 now being more
complex than a renaming. The theories
are all taken from Figures 5.2a and 5.2b.

ℕ
𝑋

𝜆𝑎, 𝑏 ∶ ℕ. 𝑏 ≤ 𝑎
≤𝑥

(b) The initial set of rewrite rules given by
𝜓 and Definition 5.1.1

28 merge (cons x xs) (cons y ys) ≐
29 if (x ≤ y) cons x (merge xs (cons y ys))
30 else cons y (merge (cons x xs) ys) ❙

(c) Excerpt from the code in Figure 5.2a which cannot
be rewritten to a declaration in context of Toset: No
rewrite rule is applicable on 𝑥 ≤ 𝑦 and thus the depen-
dency on ≤ remains.

Figure 5.3.: Modified setting of the running example where insufficient rewrite rules make
App-Gen-0 fail on the shown code snippet

that it may be extended, then we would be forced to reflect the order flipping in that
morphism as follows:

𝜓∶ Toset ⇝ Nat
𝑋 ↦ ℕ
≤𝑥 ↦ 𝜆𝑎, 𝑏 ∶ ℕ. 𝑏 ≤ 𝑎 4

For reference, Figure 5.3a shows the complete modified setting. Let us try App-Gen-
0 from Definition 5.1.1 on it. The initial and relevant set of rewrite rules it uses is
shown in Figure 5.3b. Evidently, they alone are unable to rewrite the expression 𝑥 ≤ 𝑦
occurring in MergeOnNat excerpted in Figure 5.3c. Thus, the surrounding declaration
of that expression cannot be “abstracted away from its dependence on Nat” and is thus
not generalizable with App-Gen-0. Hence, the algorithm fails in the modified setting.

Observe how the problem would not occur if we used a 𝛽-expanded form in the snippet
exactly matching the 𝜓(≤𝑥):

1 if (x ≤ y) … /T Previously ❙
2

3 if (([a: ℕ] [b: ℕ] b ≤ a) y x) … /T Now ❙

Since then we could apply the second rewrite rule from Figure 5.3b to get if (≤ₓ y x),
4Note that for reasons of conciseness we employ the usual 𝜆 abstraction notation in the text, whereas

we use the actually correct square bracket notation […] … solely in MMT surface syntax.
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which is modulo notation5 equivalent to the desired if (y ≤ₓ x). Of course, requiring
users to manually 𝛽-expand their terms is undesired and would partly defeat the whole
purpose of automated generalization. Therefore, we tackle this problem from the other
side and let the algorithm account for it.

Stepping back and ignoring the part on 𝛽-expansion, we see that 𝑥 ≤ 𝑦 is nothing else
than an “instantiation” of the RHS of the morphism’s assignment

≤𝑥 ↦ 𝜆𝑎, 𝑏 ∶ ℕ. 𝑏 ≤ 𝑎

with (ordered) arguments 𝑦 and 𝑥. Simultaneously, the desired rewritten form 𝑦 ≤𝑥 𝑥
is an instantiation of the LHS of that assignment, namely ≤𝑥 instantiated with the
same arguments in the same order. Thus, we realize that in addition to the previously
generated rules of the form in Figure 5.4a, we now need rules of the form shown in
Figure 5.4b as well.

𝑐′
𝑐

(a) Existing rule scheme

instantiation of 𝑐′ with arguments 𝜎
instantiation of 𝑐 with arguments 𝜎

(b) Desired new rule scheme

Figure 5.4.: The existing rule scheme next to the desired new rule scheme (conceptual
sketch). They both are generated for all assignments (𝑐 ∶= 𝑐′) in the spe-
cialization morphism.

On the formal level, this translates to the following: let 𝜓 denote the specialization
morphism, then for every (𝑐 ∶= 𝜆𝑥1,… , 𝑥𝑛.𝑠) ∈ 𝜓 we introduce the rewrite rule

𝑠𝜎
𝑐 𝜎(𝑥1)…𝜎(𝑥𝑛)

dom(𝜎) = {𝑥1,… , 𝑥𝑛}.

In the example, we have (≤𝑥 ∶= 𝜆𝑎, 𝑏 ∶ ℕ. 𝑏 ≤ 𝑎) ∈ 𝜓, hence generate the following rule:

(𝑏 ≤ 𝑎)𝜎
≤𝑥 𝜎(𝑎) 𝜎(𝑏) dom(𝜎) = {𝑎, 𝑏} (∗)

which we can equivalently express as follows to see that it exactly fits our purpose:

⇔ 𝑡1 ≤ 𝑡2
≤𝑥 𝑡2 𝑡1

⇔ 𝑡1 ≤ 𝑡2
𝑡2 ≤𝑥 𝑡1

(∗∗)

5To be precise, modulo notation on the level of typesetting listings in the present thesis, not in terms
of the MMT system’s data structures.
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By means of the last rule (∗∗), the previously problematic term 𝑡 = 𝑥 ≤ 𝑦 can now be
rewritten to 𝑦 ≤𝑥 𝑥, which was the desired outcome. Arguing with the first rule (∗) we
would consider 𝑡 an instantiation of 𝜆𝑎, 𝑏 ∶ ℕ. 𝑏 ≤ 𝑎 via 𝜎 = [𝑎 ↦ 𝑦, 𝑏 ↦ 𝑥].

For reference, we explicitly state the second revision of the algorithm, which we devel-
oped in this section, together with assertions on its validity and behavior preservation:

Definition 5.2.1 (App-Gen-1: App-Gen-0 + surface 𝛽-awareness). Let the the-
ories 𝑅, 𝑆, 𝑇 , and the morphism 𝜑∶ 𝑅 ⇝ 𝑆 be given. Build 𝐺 and 𝑔 ∶ 𝐺 ⇝ 𝑇 as
follows:

𝑅 𝑆

𝐺 𝑇

𝜑

𝑔

1. Set 𝐺0 ∶= {include 𝑅}, 𝑔0 ∶= (include 𝑅 ↦ 𝜑)

2. In narrative order for every declaration 𝛿 ∈ 𝑇 do the following:
• In case of an inclusion include U: skip if 𝑈 = 𝑆, else adopt unchanged.
• In case of a constant declaration, try rewriting its type and possibly

definiens component using the following rules until it is an 𝐺𝑖−1-expression:
– For every (𝑐 ∶= 𝑐′) ∈ 𝜑:

𝑐′
𝑐 (5.3)

– For every (𝑐 ∶= 𝜆𝑥1,… , 𝑥𝑛.𝑠) ∈ 𝜑:

𝑠𝜎
𝑐 𝜎(𝑥1)…𝜎(𝑥𝑛)

dom(𝜎) = {𝑥1,… , 𝑥𝑛} (5.4)

– For every successfully rewritten (𝑑′ ∶ 𝐷′[= ̂𝑑]) ∈ 𝐺𝑖−1 of (𝑑 ∶ 𝐷[=
̂𝑑]) ∈ 𝑇 :

𝑑
𝑑′ (5.5)

Let 𝛿′ denote the fully rewritten declaration with all its components, then
a) set 𝐺𝑖 ∶= 𝐺𝑖−1 ∪ 𝛿′,
b) and set 𝑔𝑖 ∶= 𝑔𝑖−1 ∪ (𝛿′ ↦ 𝛿),

Again, we can state and prove properties completely analogous to the ones for App-
Gen-0:
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Lemma 5.2.1 (Validity of App-Gen-1 under Assumption of Well-Typedness). If
the theory 𝐺 generated by App-Gen-1 is well-typed, then the morphism 𝑔 ∶ 𝐺 ⇝ 𝑇
is well-typed as well and the square given in the algorithm definition commutes.

Corollary 5.2.0.1 (Behavior Preservation of App-Gen-1). If the theory 𝐺 gener-
ated by App-Gen-1 is well-typed, then (𝐺, 𝑔) is a behavior-preserving generalization
of 𝑇 .

Remark 5.2.1. Rewrite scheme 5.4 from above can be understood as a guided form
of 𝛽-expansion of 𝑇 -terms.

More than guided 𝛽-expansion Recall that at the very beginning of this section, we
wanted to generalize along the morphism 𝜓∶ Toset ⇝ Nat with 𝜓(𝑋) = ℕ and 𝜓(≤𝑥) =
≥. Then, we assumed without good reason that ≥ is not a symbol in Nat, which brought
us to using a lambda expression to swap the arguments. Now we state the actual reason
in hindsight for didactical reasons.

Let 𝜓 be the morphism as just defined. Then App-Gen-1 would fail rewriting 𝑥 ≤ 𝑦
in MergeOnNat. To see this in detail, we have to think about how ≥ can be defined in
Nat, when ≤ is already assumed to exist. Indeed sensible formalizations need to link ≤
and ≥ in one way or another. Some possibilies are shown in Figure 5.5. In the following,
we shortly discuss why rewriting fails in every case and how the algorithm could be
recovered – at least in theory. Note that in every case we have the same specialization
morphism in mind along we generalize, namely 𝜓 as defined above.

The first shown alternative is perceivedly equivalent to having used the morphism
assignment ≤𝑥 ↦ 𝜆𝑎, 𝑏 ∶ ℕ. 𝑏 ≤ 𝑎 to begin with, which would be fine with App-Gen-
1. However, in the eyes of our rule schemes this is different from using 𝜓(≤𝑥) = ≥ since
they only look at the “raw” RHS of assignments without going further with 𝛿-expansion.
Indeed, if they did so, we would be able to successfully rewrite the problematic term.

For the remaining alternatives we note that 𝛿-expansion is unsatisfactory since ≥ does
not even have a definiens in those cases. Accounting for the remaining alternatives
would thus need to consider the equational theory given by the (dependently typed)
axioms. Indeed, we can understand every symbol matching one of the forms below as a
(bidirectional) rewrite rule between LHS and RHS:

𝑐 ∶ ⊢ ∀[𝑦1 ∶ 𝑌1,… , 𝑦𝑛 ∶ 𝑌𝑛]. LHS ⇔ RHS
𝑐 ∶ ⊢ ∀[𝑦1 ∶ 𝑌1,… , 𝑦𝑛 ∶ 𝑌𝑛]. LHS ≐ RHS
𝑐 ∶ {𝑦1 ∶ 𝑌1,… , 𝑦𝑛 ∶ 𝑌𝑛} ⊢ LHS ⇔ RHS
𝑐 ∶ {𝑦1 ∶ 𝑌1,… , 𝑦𝑛 ∶ 𝑌𝑛} ⊢ LHS ≐ RHS
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1 theory Nat =
2 ℕ: type ❙
3

4 /T … ❙
5

6 /T Declaration and definition of ≤, e.g. via subtraction ❙
7 ≤: ℕ ⟶ ℕ ⟶ prop = ❘ = … ❘ # #1 ≤ #2 ❙
8

9 /T Alternatives for definition of ≥
10 ----------------------------------- ❙
11

12 /T Alternative 1: intensional equality ❙
13 ≥: ℕ ⟶ ℕ ⟶ prop = [a, b] b ≤ a ❙
14

15 /T Alternative 2a: extensional equality with ∀ and ⇔ ❙
16 ≥: ℕ ⟶ ℕ ⟶ prop ❙
17 ax_reversed_order2a: ⊦ ∀[n] ∀[m] n ≤ m ⇔ m ≥ n ❙
18

19 /T Alternative 2b: extensional equality with ∀ and ≐ ❙
20 ≥: ℕ ⟶ ℕ ⟶ prop ❙
21 ax_reversed_order2b: ⊦ ∀[n] ∀[m] n ≤ m ≐ m ≥ n ❙
22

23 /T Alternative 2c: extensional equality with dependent types and ⇔ ❙
24 ≥: ℕ ⟶ ℕ ⟶ prop ❙
25 ax_reversed_order2c: {n: ℕ, m: ℕ} ⊦ n ≤ m ⇔ m ≥ n ❙
26

27 /T Alternative 2d: extensional equality with dependent types and ≐ ❙
28 ≥: ℕ ⟶ ℕ ⟶ prop ❙
29 ax_reversed_order2d: {n: ℕ, m: ℕ} ⊦ n ≤ m ≐ m ≥ n ❙
30 ❚

Figure 5.5.: Possible formalizations of ≥ in 𝑁𝑎𝑡 on top of an existing ≤. For them to be
sensible, they need to link both symbols either intensionally (alternative 1)
or extensionally via axioms (alternatives 2a – d). Note that the equivalence
of alternative 2a – d might very well depend on the chosen foundation and
logic.
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In fact, the MMT system already allows annotating a subset of such symbols with the
keywords role Simplify to add a corresponding unidirectional left-to-right simplification
rule to the set of rules for a theory.6 However, considering such rules for App-Gen would
open a Pandora’s box. Had we before a rewriting system terminating in most sensible
settings (cf. Section 6.2.3) and whose rule applications always bring one closer to a
solution, we would now be faced with combinatorial explosion and possible cycles.

Overall, we conclude that it is easy to come up with sensible, non-contrived examples,
which immediately break our derived App-Gen-1 algorithm. One key aspect is that
for almost all practical purposes rewriting must be considered modulo some equational
theory, which can come from both the chosen foundation and from arbitrary user-defined
axioms. Note how App-Gen-1 touched the tip of the iceberg of managing the equational
theory from LF by considering 𝛽-expansion on the very surface. Even when neglecting
the variable part by the user, the overall problem of (efficiently) finding a suitable gen-
eralization is as complicated as higher-order rewriting and unification [Pre97; MN98],
which is known to be undecidable.

5.3. Further Examples
5.3.1. Normed & Metric Spaces
In basic analysis every normed vector space induces a canonical metric space with the
metric

𝑑(𝑎, 𝑏) ∶= ‖𝑎 − 𝑏‖
In MMT this corresponds to the following theories and morphism declarations:

1 theory MetricSpace =
2 X : type ❙
3 d: X ⟶ X ⟶ ℝ ❙
4

5 /T Metric space axioms omitted for brevity ❙
6 ❚
7

8 theory NormedVectorspace =
9 Y: type ❙

10 norm: Y ⟶ ℝ ❙
11 minus: Y ⟶ Y ⟶ Y ❘ # 1 - 2 ❙
12

13 /T Other vector space operations and axioms omitted for brevity ❙
14 ❚
15

16 view NormedAsMetricSpace : ?MetricSpace -> ?NormedVectorspace =

6See https://uniformal.github.io/doc/language/declarations.html and https://uniformal.
github.io/apidoc/info/kwarc/mmt/lf/SimplificationRuleGenerator.html.
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17 X = Y ❙
18 d = [a, b] norm (a - b) ❙
19 ❚

We can now formalize some basic notions in the theory of normed vectorspaces:

21 theory NormedVectorspaceThms =
22 include ?NormedVectorspace ❙
23

24 cauchy
25 : (ℕ ⟶ Y) ⟶ prop ❘
26 = [f] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] ∀[m: ℕ] (n ≥ N ∧ m ≥ N) ⇒ ((norm ((f n) -

(f m))) < ɛ) ❙↪

27 convergent_to
28 : (ℕ ⟶ Y) ⟶ Y ⟶ prop ❘
29 = [f, y] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] (n ≥ N) ⇒ ((norm ((f n) - y)) < ɛ) ❙
30

31 /T Lipschitz continuity of an endofunction ❙
32 lipschitz
33 : (Y ⟶ Y) ⟶ prop ❘
34 = [f] ∀[y1: Y] ∀[y2: Y] norm ((f y1) - (f y2)) ≤ norm (y1 - y2) ❙
35

36 f: ℕ ⟶ Y ❙
37 f_is_cauchy: ⊦ cauchy f ❙
38

39 my_y: Y ❙
40 f_convergent: ⊦ convergent_to f my_y❙
41

42 /T A theory of balls ❙
43 in_ball
44 : Y ⟶ Y ⟶ ℝ ⟶ prop ❘
45 = [y, center, radius] (norm (y - center)) < radius❙
46

47 /T Actually only for ɛ > 0 ❙
48 center_always_in_ball
49 : ⊦ ∀[y: Y] ∀[ɛ: ℝ] in_ball y y ɛ❙
50

51 ball_convergent_to
52 : (ℕ ⟶ Y) ⟶ Y ⟶ prop ❘
53 = [f, y] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] (n ≥ N) ⇒ in_ball (f n) y ɛ❙
54 ❚

Evidently from a mathematician’s point of view, these declarations can be trivially lifted
to metric spaces. Indeed, by employing App-Gen-1 we can do so as well. Especially
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note the assignment to 𝑑 by the morphism in the first code snippet above. It is very
similar to to 𝜆𝑎, 𝑏 ∶ ℕ. 𝑏 ≤ 𝑎, which we discussed extensively in the last section. The
generalized theory after applicatoin looks as follows:

57 theory NormedVectorspaceThmsGeneralized =
58 include ?MetricSpace ❙
59

60 cauchy
61 : (ℕ ⟶ X) ⟶ prop ❘
62 = [f] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] ∀[m: ℕ] (n ≥ N ∧ m ≥ N) ⇒ (d (f n) (f m))

< ɛ ❙↪

63 convergent_to
64 : (ℕ ⟶ X) ⟶ X ⟶ prop ❘
65 = [f,y]∀[ɛ:ℝ]∃[N:ℕ]∀[n:ℕ]n≥N⇒(d (f n) y)<ɛ ❙
66

67 lipschitz
68 : (X ⟶ X) ⟶ prop❘
69 = [f] ∀[y1: X] ∀[y2: X] d (f y1) (f y2) ≤ d y1 y2 ❙
70

71 f : ℕ ⟶ X ❙
72 f_is_cauchy: ⊦ cauchy f ❙
73

74 my_y: X ❙
75 f_convergent: ⊦ convergent_to f my_y ❙
76

77 in_ball
78 : X ⟶ X ⟶ ℝ ⟶ prop ❘
79 = [y, center, radius] (d y center) < radius ❙
80

81 center_always_in_ball
82 : ⊦ ∀[y: X] ∀[ɛ: ℝ] in_ball y y ɛ ❙
83

84 ball_convergent_to
85 : (ℕ ⟶ X) ⟶ X ⟶ prop ❘
86 = [f,y] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] n ≥ N ⇒ in_ball (f n) y ɛ ❙
87 ❚

We omit the obvious view generated by App-Gen-1 since it effectively does nothing else
than renaming.

5.3.2. Sequences & Nets
In topological spaces nets are a generalization of sequences where the indexing domain
ℕ is replaced by arbitrary upwards-directed posets [Cla16]. We can almost autogenerate
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initial bits of the theory of nets by starting with the theory of sequences and applying
App-Gen-1. Precisely, we start with the following formalization:

1 theory Topology =
2 Y: type ❙
3

4 /T Neighborhood arounds a point ❙
5 neighborhood: {y: Y} type ❙
6 in_neighborhood: {y: Y} Y ⟶ neighborhood y ⟶ prop ❘ # 2 ∈ 3 ❙
7 ❚
8

9 theory SequencesInTopology =
10 include ?Topology ❙
11 sequence: type ❘ = ℕ ⟶ Y❙
12

13 eventually_constant
14 : sequence ⟶ prop ❘
15 = [s] ∃[c: Y] ∃[N: ℕ] ∀[n: ℕ] (n ≥ N) ⇒ s n ≐ c❙
16

17 convergent_to
18 : sequence ⟶ Y ⟶ prop ❘
19 = [s, y] ∀[U: neighborhood y] ∃[N: ℕ] ∀[n: ℕ] n ≥ N ⇒ (s n) ∈ U❙
20

21 has_limit_point
22 : sequence ⟶ Y ⟶ prop ❘
23 = [s, y] ∀[U: neighborhood y] ∀[n: ℕ] ∃[N: ℕ] N ≥ n ∧ (s N) ∈ U❙
24 ❚

We then define upwards directed posets and their incarnation as ℕ in the theory of
sequences:

26 theory UpwardsDirectedPoset =
27 X : type ❙
28 leq_poset: X ⟶ X ⟶ prop ❘ # 1 ⊑ 2❙
29

30 /T Usual poset axioms (reflexivity, transitivity, antisymmetry) omitted ❙
31 upwards_directed: ⊦ ∀[x1: X] ∀[x2: X] ∃[y: X] x1 ⊑ y ∧ x2 ⊑ y ❙
32 ❚
33

34 view UpwardsDirectedPosetToNat : ?UpwardsDirectedPoset ->
?SequencesInTopology =↪

35 X = ℕ ❙
36 leq_poset = [a, b] b ≥ a ❙
37
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38 /T By the maximum function on the natural numbers ❙
39 upwards_directed = … ❙
40 ❚

Generalizing SequencesInTopology along the given morphism gives:

42 theory SequencesInTopologyGeneralized =
43 include ?Topology ❙
44 sequence: type ❘ = X ⟶ Y❙
45

46 eventually_constant
47 : sequence ⟶ prop ❘
48 = [s] ∃[c: Y] ∃[N: ℕ] ∀[n: ℕ] (n ≥ N) ⇒ s n ≐ c❙
49

50 convergent_to
51 : sequence ⟶ Y ⟶ prop ❘
52 = [s, y] ∀[U: neighborhood y] ∃[N: ℕ] ∀[n: ℕ] n ≥ N ⇒ (s n) ∈ U❙
53

54 has_limit_point
55 : sequence ⟶ Y ⟶ prop ❘
56 = [s, y] ∀[U: neighborhood y] ∀[n: ℕ] ∃[N: ℕ] N ≥ n ∧ (s N) ∈ U❙
57 ❚

Note that in the listing above we retained the old declaration names. Indeed, discus-
sion how users are asked to change names in the implementation is outside the scope
of this thesis. As already remarked, the obtained theory of nets is only almost correct.
Namely, it neglects the important aspect of nets that their indexing domain is left vari-
able, even when the topological space is fixed. That is, in a topological space (𝑌 , 𝒪𝑌 ) a
net is a function from an upwards-directed poset into 𝑌 .7 It seems that nets are indeed
not a purely syntactical generalization of sequences. Indeed, with the usual definition of
a sequence as an ℕ-indexed sequence, they are not. However, if one defines a sequence
as a functions from a countable toset into the respective topological space, then nets are
again a purely syntactical generalization. The latter point can be justified insofar that
ℕ-indexed sequences are in fact as powerful as sequences indexed by arbitrary countable
tosets.8

Further observe how we were careful to express all sequence properties only in terms
of quantifiers and the order relation without implicitly using the linearity or countability
of ℕ. For example, we could have instead defined that a sequence 𝑠 has a limit point 𝑦
iff. for every neighborhood 𝑈 of 𝑦 the set {𝑛 ∈ ℕ | 𝑠 𝑛 ∈ 𝑈} is infinite. While this would
generalize equally fine to upwards-directed posets, it would lead to a different notion
than the cofinality notion in the generalization shown above and commonly accepted

7In particular, for a fixed topological spaces one needs to talk about the class of all nets.
8Arguably the usual ℕ-indexed sequences are just a sensible restriction without loss of generality.
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for nets. The authors posit that careful formalization of proofs of basic theorems about
sequences could also be purely syntactically generalized. As the MMT system does not
sensibly support formalizing proofs, verification of the claim remains as future work.

5.4. Categorical Semantics

𝑅 𝑆

𝐺 𝑇
In the previous sections we only captured our App-Gen principle by specification of
concrete algorithms. Thus it remained an open question whether the principle admits
an elegant abstract definition. Our consistent use of the commuting square above might
have already suggested to the reader that the principle possibly admits some categorical
interpretation related to pullbacks and pushouts. In fact, in the category 𝕋𝕙𝕪 of theories
and theory morphisms, colimits are a sensible means to “identify, translate and combine
logics” [Rab17]. Hence, this section intends to explore this direction for App-Gen on
the very surface. Concretely, we motivate its relation and difference to pushouts and
informally understand App-Gen as an inverse pushout. Dually, we glance at (inverse)
pullbacks and their meaning in the broader context of refactoring as well. We leave
proper treatment to future work.

Structure of the Section We first explain how pushouts are constructed in the category
𝕋𝕙𝕪. Then, we will contrast those to the procedure of App-Gen and see the latter
as inverse pushouts. Finally, we present the complete picture by dualizing (inverse)
pushouts to (inverse) pullbacks.

Pushouts Let us first informally explain the semantics and constructions of pushouts
in 𝕋𝕙𝕪. Recall the setting of our running example in Figure 5.6a. For the pushout we
forget the lower right corner (Figure 5.6b). In the exposition below we will observe that
the pushout operaton in fact recreates the forgotten theory MergeOnNat with exactly
the same incoming morphisms.

Intuitively, to build the pushout, we can apply the same procedure as in many algebraic
categories (Set, Mon, Grp, Vect𝔽, …), where pushouts can be thought of as amalgamated
sums:

Pushouts in Algebraic Categories

The pushout of 𝐵
𝑓
←− 𝐴

𝑔
−→ 𝐶 is (𝐵 + 𝐶)/∼, where ∼ is the smallest congruence

relation identifying the elements in the coproduct which stem from a common source
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element in 𝐴. Formally, for every 𝑎 ∈ 𝐴 we require 𝑓(𝑎) ∼ 𝑔(𝑎). The morphisms
into the coproduct are simply given by the canonical embeddings of 𝐵 and 𝐶 into
the set of equivalence classes (𝐵 + 𝐶)/∼.

Toset Nat

MergeOnToset MergeOnNat

𝜑

𝑖 𝑗
𝜓

(a) Complete square setting of the running
example. Every other incomplete set-
ting shall complete to this one via a cat-
egorical construction.

Toset Nat

MergeOnToset

𝜑

𝑖

(b) The pushout setting

Toset Nat

MergeOnNat

𝜑

𝑗

(c) The inverse pushout setting, which is
completable by App-Gen

Figure 5.6.: The chapter’s running example next to its restricted (inverse) pushout set-
tings

Hence, let us first build the coproduct of MergeOnToset and Nat, which in 𝕋𝕙𝕪 always
amounts to a name clash free union with the obvious inclusion injections. Here, the
summands do not share symbols to begin with, hence the coproduct theory is just a
concatenation of both input theories. Next, we quotient out those declarations in the
concatenation which stem from a common source declaration in Toset. In other words,
for every declaration 𝛿 ∈ Toset, we follow the span’s morphisms 𝑖 and 𝜑, and then
identify 𝑖(𝛿) and 𝜑(𝛿) in the concatenation. In particular we identify9

𝑋 = 𝑖(𝑋) ∼ 𝜑(𝑋) = ℕ
≤𝑥 = 𝑖(≤𝑥) ∼ 𝜑(≤𝑥) = ≤

In the pushout, these declarations from the concatenation are each amalgamated to a
single declaration. In theory, pushouts are only unique up to isomorphism and at this
point we could choose arbitrary names for the amalgamated symbols. However, users
would rightly expect existing names to be chosen. For example, choosing ℕ for the
amalgamation of the pair 𝑋 and ℕ is indeed possible typewise as well as sensible UX-
wise. Details on sensible selections of colimits in general and their existence can be found
in [CMR17]. Continuing our specific choice, we also make ≤ stand for the identification of

9For brevity we left out the axioms contained in Toset. They do not contribute to the quotiening in
any meaningful way.
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Elem Nat

ListElem ListNat⌜
Figure 5.7.: Pushout of elem-lists to Nat yielding lists over natural numbers

≤𝑥 and ≤. Neglecting the remaining three declarations of Toset representing its axioms,
the quotiented concatenation so far with the coproduct’s inclusion morphisms is already
almost equal to the original MergeOnNat with its incoming morphisms (Figure 5.6a).
The only difference is that our construction the inclusion of Nat has been flattened out.
We neglect this exception to spare technical details.

The important conclusion is that the pushout operation applied our existing speciali-
zation 𝜑 to MergeOnToset.10

Remark 5.4.1. The reader might convince themselves of their intuition by consid-
ering one more example taken from [CMR17]. The setting is sketched in Figure 5.7
and a more detailled formalization can be found in Appendix A.4. Consider a the-
ory Elem declaring a single symbol elem ∶ 𝑡𝑦𝑝𝑒. Building upon this theory, ListElem
formalizes the notion of finite lists with entries of type elem. Orthogonally, the mor-
phism 𝜑∶ Elem ⇝ Nat specializes 𝑒𝑙𝑒𝑚 to ℕ. Performing the “canonical” pushout
ListElem ↩ Elem ⇝ Nat leads to the theory of lists of natural numbers ListNat.

Inverse Pushouts Comparing pushouts to our principle App-Gen, we realize that our
principle begins its work from a different start configuration. Namely, it starts with the
setting shown in Figure 5.6c, where our apparent pushout MergeOnNat already exists,
but MergeOnToset has been forgotten. Performing the refactoring principle then creates
that very forgotten theory. For this reason we informally call the procedure performed
by App-Gen an inverse pushout. In fact, we conjecture that first performing this inverse
pushout operation, then forgetting about the lower right theory, and finally computing
the pushout yields exactly the forgotten theory.

Similar to pushouts above, we can record a characteristic semantic property: the
inverse pushout operation applied our existing generalization 𝜑 to MergeOnNat.

The Full Picture We can dualize (inverse) pushouts to (inverse) pullbacks to get ad-
ditional possibly interesting concepts. Whereas (inverse) pushouts semantically mean
the application of either generalization or specialization, (inverse) pullbacks dually mean
lifting either one. We depict all four concepts in Figure 5.8.

10Indeed, if 𝜓 ∶ MergeOnToset ⇝ MergeOnNat denotes the indicated morphism generated by the
pushout, we can understand 𝜓 as a (hyper-)homomorphic extension of 𝜑∶ Toset ⇝ Nat to theory
fragments of Toset, i.e. theories with a single inclusion, namely from Toset [Rab17, Notation 2.27].
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Toset Nat

MergeOnToset MergeOnNat⌜
(a) Pushout

apply specialization

Toset Nat

MergeOnToset MergeOnNat⌝
(b) Inverse pushout
apply generalization

Toset Nat

MergeOnToset MergeOnNat

⌟

(c) Pullback
lift generalization

Toset Nat

MergeOnToset MergeOnNat

⌞

(d) Inverse pullback
lift specialization

Figure 5.8.: Various forms of categorical constructs with generalization or specialization
meaning.
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I implemented the generalization principles described in the present thesis, namely The-
ory Splitting and App-Gen from Chapters 4 and 5, respectively, and contributed
them to the MMT ecosystem1. Overall, this chapter showcases both implementations,
discusses possible usage scenarios, and highlights design decisions. For Theory Split-
ting, we present a headless implementation, and overview some products which could be
built on top of it. Focussing ourselves in particular on App-Gen, we present a headless
implementation as well as a graphical user interface. Additionally, we state a termi-
nation criterion for rewriting and discuss how we deal with rewrite failures UX-wise.
Finally, we conclude the chapter with a preliminary evaluation.

6.1. Theory Splitting

For Theory Splitting I implemented basic algorithmic, i.e. non-graphical, support
for it on top of the MMT system.2 In the course of doing so, I added APIs to deal with
graph representations of theories and their declaration interdependencies as well.

(API) User Interface With our implementation, an API user can specify a theory
and a valid partition on its declarations (cf. Definition 4.1.3) to obtain the respective
declaration-grained split diagram. From there, the API user is free to further process
the output, e.g. to export it to MMT surface syntax in the same way it is done below
in the App-Gen implementation.

Intended Usage Currently due to the lack of a GUI, the implementation is not suited
for end users. However, it can serve as the basis for (a) such a GUI and (b) batch
refactorings. For (a), following the graphical plugin implementation for App-Gen be-
low, a similar refactoring panel could be created for Theory Splitting. We imagine
a prototypical user interface showing the interdependency graph of a theory, which the
user can color according to their desired partition. Concerning (b), a batch refactor-
ings (headless) tool could automatically search for sensible splits in libraries and suggest
them to the user. In particular, the search space could be driven by measures on theories
and morphisms. For example on theories, connectedness of the declaration interdepen-

1Concrete references for looking up the implementation code are given in the respective sections.
2While on top of the MMT syste, this has been done in a separate repository [ThySplit] for the reason

that the implementation has a rather large graph library dependency whose adoption in the official
MMT repository first needs careful evaluation.
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1 theory ?Monoid
2 HasMeta ?Monoid http://cds.omdoc.org/urtheories?LF
3 Declares ?Monoid ?Monoid?X
4 constant ?Monoid?X
5 Declares ?Monoid ?Monoid?op
6 constant ?Monoid?op
7 DependsOn ?Monoid?op?type ?Monoid?X?type

Figure 6.1.: Relational information for a theory of monoids bookkept by the MMT sys-
tem. It is a simple text format, from which we stripped some of the fully
qualified URIs for brevity.

dency graph could be investigated. For morphisms, the authors briefly looked into and
implemented very preliminarily surjectivity, totality and complexity measures.3

Rough Architecture Given a theory and a partition, the implementation first crucially
needs the dependency relation on declarations (cf. Definition 2.2.2) to validate and
perform the split. Fortunately, the relation is already bookkept by the MMT system
in its so-called “relational information” (Figure 6.1), whose dependency information
we directly feed as a graph into the third-party graph library jGraphT [Sic+18] for
easier processing. In particular, the library allows transitive reduction with a one-liner.
Validation and splitting is then straightforwardly performed close to Definition 4.1.3.
Employing the graph library and its exporter to the graph rendering software GraphViz
[Ell+03], we exemplarily rendered two declaration interdependency graphs in Figure 6.2.
However, we note that our rendering was for prototypical reasons only. Especially,
rendering of whole theory graphs in 2D as well as 3D has already been done in much more
detail [RKM17; MKR] and those existing implementations should preferably be extended
such that theories can also be looked into to show the declaration interdependency
graphs.

6.2. App-Gen
The contribution for App-Gen is two-fold. On the one hand, it encompasses an imple-
mentation of the revised algorithm App-Gen-1 from Definition 5.2.1, which has been
directly contributed to the core repository of the MMT system [MMTb].4 On the other
hand, it also adds graphical tool support for running it. The latter is based on top of

3Roughly, surjectivity measures how much a morphism’s mapping (transitively) depends on the symbols
in the codomain. Totality means non-partiality. Complexity describes the (tree) size of the assigned
codomain expressions in the morphism. Renamings are minimally complex. We suggest a morphism
be surjective, total and simple.

4The commits first publicly landed in release v16.0.0: https://github.com/UniFormal/MMT/releases/
tag/v16.0.0.
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(a) A theory of monads (b) A theory of physical dimensions

Figure 6.2.: Rendered declaration interdependency graphs. Nodes with square brackets
denote inclusions, all other denote ordinary constant declarations.

a preexisting MMT plugin for the IntelliJ IDEA editor [Intellij-MMT]. Again, the code
has been directly contributed to that repository.

Structure of the Section In Section 6.2.1 we describe possible users of the tool. In
Section 6.2.2 we sketch the placement of our tool in the MMT ecosystem and discuss
initial design decisions of the algorithm. Subsequently, in Section 6.2.3 we reason about
termination and success of generalization, which we have partly left unspecified in pre-
vious chapters. Whereas both previous sections focus on the headless algorithm itself,
Section 6.2.4 finally presents the developed GUI and describes how it deals with gener-
alization errors.

6.2.1. Intended User Base

We already described implementation-agnostic use cases in the introductory Chapter 1
as well as more concretely in the introduction to App-Gen in Chapter 5. Hence, we focus
ourselves on describing use cases possible with the current state of the implementation
and its GUI.

The implementation already allows end users to make existing knowledge more ab-
stract by entering theories and morphisms into the graphical user interface and clicking
a button. However, we remark that currently settings admitting successful generaliza-
tion are limited by the set of rewrite rules App-Gen-1 considers, cf. Section 5.2 for an
elaborated discussion. Nonetheless, we suppose that playing around with simple enough
generalization tasks is possible, perhaps in the realm of algebraic hierarchies and their
incarnations, cf. Section 5.3. Hence, the current state is more targetted at students
instead of senior or research mathematicians. In particular, we detail an educational use
case in Chapter 7.
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MMT IntelliJ Plugin

Auto Completion

Syntax Highlighter

Refactoring Panel
…

Generalizer Panel

uses

MMT System

API

Parser

Type Checker
…

Refactoring

LinkInverter

LinkInversion
RulesProvider

LF

Typing Rules

Notation
…

Refactoring
…

LFLinkInversion
RulesProvider

Figure 6.3.: Architectural landscape of the MMT ecosystem and my implementation
(bold-faced)

6.2.2. Algorithm Implementation: Architectural Overview
A rough architectural overview can be seen in Figure 6.3, where the contribution is
marked in bold. On the left, we see the plugin side accounting for the graphical user
interface which we discuss below in Section 6.2.4. On the right, we see a sketch of the
aggregated module/class/interface hierarchy of the MMT system. On the outermost
level it is structured into multiple modules (API, LF, …). Especially, as foundation
independence is a prescribed goal of MMT, most of the foundation-agnostic business logic
is put into the API module, whereas the bits dependent on the “standard” foundation
LF are put into its respective module.

The same holds true for my algorithm contribution, which is split across the API and
LF modules as well. Evidently, App-Gen-1 from Definition 5.2.1 depends on LF only
in one of its rewriting rule schemes, namely scheme eq. (5.4). In contrast, the other
two rules schemes can be considered part of the “algorithmic skeleton” of the definition:
Independent of which additional rules might get added in the future, these two rules are
probably kept. Consequently, we split the logic as follows (Figure 6.3):

• a class LinkInverter in the API module

• an interface LinkInversionRulesProvider in the API module

• a class LFLinkInversionRulesProvider in the LF module implementing the former
interface

The LinkInverter class precisely captures the algorithm’s skeleton. As input, it takes
theories 𝑅, 𝑆, 𝑇 with 𝑆 ↪ 𝑇 , a morphism 𝜑∶ 𝑅 ⇝ 𝑆, and a LinkInversionRule-
sProvider. It then performs generalization by rewriting with the rule schemes eqs. (5.3)
and (5.5), and those contributed by the passed rules provider. Eventually, assuming
termination, it outputs the generalized theory together with a specialization morphism.
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Nat Nat

? {𝑝𝑙𝑢𝑠′ ∶ ℕ ⟶ ℕ ∶= plus}

plus↦minus
minus↦plus

Figure 6.4.: Non-terminating generalization setting with App-Gen-1 and its implemen-
tation: The plus in the definiens of plus′ will get indefinitely rewritten to
minus, plus, minus, …. See Appendix A.3 in the appendix for elaborated
code.

The employed LFLinkInversionRulesProvider class is currently the only rules provider.
Provided a specialization morphism, it generates the rules given by the LF-dependent
scheme eq. (5.4). To perform the matching happening in this scheme, it uses the already
existing higher-order typed Matcher class from MMT’s API module.

Employing this separation, multiple variants of App-Gen can coexist in a clean and
DRY5 way. In particular, future work might allow user-defined additional rewrite rules
by means of a GUI. This becomes straightforward thanks to this separation.

6.2.3. Termination and Success of Generalization
Currently, the LinkInverter class recursively and exhaustively applies the gathered
rewrite rules in unspecified order. This might be fine in most realistic circumstances
fulfilling the termination criterion below, but may yield non-terminating behavior in
some cases as exemplified by Figure 6.4. The root cause for non-termination in that
example is that the output of a rewrite rule is not necessarily stable, but instead can
be fed again as input to a second (possibly identical) rewrite rule. Thus, if we prevent
applicability of a rule’s output as a second rule’s input, we can guarantee termination.6

Do note that void rewrite rules, i.e. rules of the form
𝑡
𝑡 for a term 𝑡, are not naïvely

applied by the implementation. In fact, disregarding void rules preserves the implemen-
tation’s semantics. As a consequence, generalizing along the identity morphism always
terminates.

To capture the informal argument on applicability of a rule’s output, we first introduce

Definition 6.2.1. Let 𝑅 and 𝑆 be two theories as well as 𝑅∗ and 𝑆∗ denote the
sets of reflexive-transitively included theories of 𝑅 and 𝑆, respectively. We define

5“Don’t Repeat Yourself” – a common software engineering slogan
6A term is made up of only finitely many subterms on which only finitely many rules are once-only

applicable.
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the intersection of two theories by

𝑅 ∩ 𝑆 ∶= ⋃
𝑇∈𝑅∗∩𝑆∗

𝑇 .

In other words, 𝑅 ∩ 𝑆 is the union of all common included theories.

Example 6.2.1. • 𝑅 ∩ 𝑅 = 𝑅∗

• {𝑐 ∶ 𝐸} ∩ {𝑐 ∶ 𝐸} = ∅ as both symbols do not come from a common base
theory and are thus treated as separate entities even though they share their
respective theory-local name.

• Let 𝑇 ∶= {𝑐 ∶ 𝐸}, 𝑅 = {include 𝑇 , 𝑐′ ∶ 𝐸 ∶= 𝑐} and 𝑆 = {include 𝑇 , 𝑐′ ∶ 𝐸 ∶=
𝑐}. We have 𝑅 ∩ 𝑆 = {𝑐 ∶ 𝐸} = 𝑇 . Indeed, in the MMT system the paths
referring to 𝑐 are equal from within both 𝑅 and 𝑆. In fact, two symbols are
identified in the intersection iff. their paths are equal.

We can now state the promised

Lemma 6.2.1 (Termination Criterion). Let 𝜑∶ 𝑅 ⇝ 𝑆 be a morphism along we
generalize. If 𝜑 is the identity on 𝑅 ∩ 𝑆, then App-Gen-1 and the implemented
algorithm both terminate.

Proof. We show that rewritten terms are stable and cannot be subject to another rewrite
anymore. For every assignment (𝑐 ∶= 𝑐′) ∈ 𝜑, either 𝑐 is a valid 𝑆-expression or not.
In the first case, we have 𝑐 = 𝑐′ per assumption and the rewrite rule becomes void. In
the second case, any terms containing 𝑐 cannot be valid 𝑆-expressions either and thus
cannot be the input of any other rewrite rule by construction.

In fact, the criterion applies to all possible (future) variants of App-Gen whenever
the rewrite schemes’ inputs are 𝑆-expressions.

We suppose without empirical evidence that in many practical generalization cases the
termination criterion is fulfilled. Let us motivate this by considering the typical scenario
for App-Gen. Namely, we posit it is a single formalization setting where different
theories often share a bunch of common inclusions. For example, they might all share
the theories used for logic, proof theory, and most importantly, the theories representing
the building blocks of the overall mathematical concept being formalized. Concretely, in
the setting of partial differential equations, the building blocks would exemplarily entail
theories of topology, boundary conditions, functional analysis, and weak differentiation.7

7Actually, MMT theories as defined in [Rab18] and implemented in [MMTb] are allowed to specify
a meta theory, whose use case is exactly to specify a theory aggregating other theories such as the
named ones in this paragraph.
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In such settings, we argue that most sensible specialization morphisms leave the common
theories untouched and only act on the actual “lowest” theories. However, (non-identity)
endomorphisms are notable exceptions.

Success of Generalization After exhaustive rewriting, according to Definition 5.2.1 we
still ought to check if the final expression is well-typed in the to-be-generated theory 𝐺8.
In the implementation, we neglect typechecking and only verify whether the rewritten
expression is a closed, possibly ill-typed expression in 𝐺. To do so, we naïvely recurse
the expression’s subterms. For every referenced constant declaration, we check whether
it originates from a theory already included in the current state of 𝐺. To be precise, we
even allow it to come from a theory which has an implicit morphism to 𝐺.9 That way,
the implementation is future-proof to yet unforeseen usage in this direction.

To cope with failures, namely, if an expression fails to be a valid 𝐺-expression, we
designed the core generalization algorithm in such a way that it accepts a dedicated
RewriteErrorHandler object. This handler object can tell the algorithm to either skip
the currently failing declaration (default), to forcefully assume it to be rewritable, or
to rewrite it to another specified declaration altogether. The achieved flexibility can be
used in multiple ways. For example, the GUI we present below uses the handler as a
callback to actually display these errors. Another future use case would be to interac-
tively query the user whether they desire to manually specify a generalized declaration.
Recall that App-Gen tackles a fundamentally undecidable problem on its surface, where
slight modifications make it fail, thus allowing human guidance would far outperform
just showing a hardcoded failure message.

6.2.4. GUI on top of the IntelliJ IDEA MMT plugin
IntelliJ IDEA is an integrated development environment (IDE) for programming in Java
and related languages [IDEA]. With its extensible plugin infrastructure, third-party
vendors may add support for other languages as well. In particular, the MMT plugin
[Intellij-MMT] adds the ability to use the IDE for formalization with the MMT system.
It offers the usual features one would expect from a language integration in an IDE
such as syntax highlighting, parsing, type checking as well as the ability to explore the
hierarchical structure of MMT documents. Behind the scenes, the MMT plugin queries
the MMT system in order to be able to provide all these features (Figure 6.3).

Within the scope of this thesis, I extended the plugin with a graphical interface to
run the implementation of App-Gen-1 dicussed above. The code has been directly
contributed to the repository in [Intellij-MMT].10

A screenshot can be seen in Figure 6.5. It shows an opened file formalizing normed
vectorspaces from Section 5.3 on the right. On the left, we see the refactoring panel I
contributed. It asks the user to enter the required parameters for App-Gen-1, namely

8To be precise, we should say 𝐺𝑖−1 here and in the following where 𝑖 denotes the current iteration.
9Implicit morphism subsume inclusions, see [RM18b] for details.

10The contribution has publicly landed in commit bf3e0f809283672582389df431af61cb23758e94, which
represents the finishing commit for version v16.0.0 of the plugin.
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paths to theories 𝑅, 𝑆, 𝑇 and a morphism 𝑅 ⇝ 𝑆.11 Upon clicking of the “Generalize”
button, the implemented algorithm is run. On success, its output – MMT surface syntax
for the generalized theory and the created specialization morphism – is presented in a
text box below the button, from which the user can directly paste its contents into
the current document. On (partial) failure, namely if some declarations could not be
successfully rewritten, they will be shown in a tree view left to the text box. The tree
details which specific subterms caused the failure.

Concretely, in the screenshot we can see success and failure at the same time. On
the one hand, generalizable declarations such as cauchy and convergent_to have been
successfully incorporated in the output text box. On the other hand, the declaration
not_rewritable, as evident from its definition shown in the editor on the right, is not
generalizable and was thus added to the tree view. Specifically, the tree shows that the
declaration caused failure in its definition and more precisely the subterm norm was not
rewritable. Indeed, the expression norm a cannot even “morally” be lifted to metric
spaces. Formally, we might say it does not rewrite rule pattern-matching norm (_ - _)
and replacing it by d(_, _). The reader is invited to look up the example’s elaboration
in Section 5.3 to convince themself of the details.

6.3. Preliminary Evaluation

It’s always too early to evaluate a
technology, until, suddenly, it’s too
late!

Martin Buxton (1987)

Due to several reasons we list below, we deem it to be too early for providing a thorough
evaluation of the presented principles and implementations.

First and foremost, this thesis presents the refactoring principles without precisely
defining criteria or measures determining when these are to be applied. Having such
measures would enable intelligently performing the refactorings on larger libraries, whose
outcomes could then be compared to refactorings suggested by humans. Additionally,
the MMT system does currently not offer a practical way to formalize proofs at time of
writing. On the one hand, this limits evaluability of measures determining good theory
splits as useful dependency data is not available. On the other hand, especially for App-
Gen the generalizability of proof terms would be a major concern in an evaluation.

Hence, we restrict ourselves to stating that the implemented principle App-Gen-
1 successfully runs on all basic examples presented in this thesis and simple enough
variations. This especially includes the merge sort running example from Chapter 5 and
further examples mentioned in Section 5.3.

11Recall the commutative square structuring these parameters, which is used throughout this thesis, e.g.
in Definition 5.2.1.
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7. Conclusion

Employing the MMT framework organizing formal knowledge into theories of typed
declarations and connecting morphisms, we have given and motivated a definition of
generalization refactorings in that system. Furthermore, we have shown a preliminary
definition for behavior preservation. Central to both definitions is that they can be
expressed and (partially) verified within the MMT system.

Based on this framework of generalization refactorings, we have presented the prin-
ciciples Theory Splitting and App-Gen. The former principle can be used for out-
sourcing declarations of an existing “large” theory onto multiple smaller, more coherent
theories. We have focussed ourselves in particular on App-Gen in the present thesis,
which generalizes theories along given morphisms. It does so by employing a set of
rewrite rules it generates from the morphism’s assignments. For example, it is able to
generalize the definiton of convergence in normed vectorspaces to metric spaces by using
the generated rewrite rule ‖⋅− ⋅‖ → 𝑑(⋅, ⋅). We have suggested App-Gen be used to help
users in prototyping formalizations and to abstract existing knowledge, which is favor-
able from an MKM perspective. Furthermore, it may be strategically used in narrative
presentation settings to primarily provide concrete knowledge while letting the abstract
counterparts implicit. Last, we imagine an educational use case for students, which we
detail below under future work.

We have presented and discussed early implementations for both principles. In par-
ticular for App-Gen, we have contributed the algorithm and a graphical interface to
the MMT ecosystem [MMTb; Intellij-MMT]. Precisely, the GUI has been created on
top of the MMT plugin for the IntelliJ IDEA IDE, which now shows a refactoring panel
allowing users to run App-Gen after having entered the necessary parameters. On (par-
tial) success, it outputs the generalized theory in MMT surface syntax, which users can
directly paste into their existing formalization.

Future Work

Evaluation We have deferred proper evaluation of the presented theory, its implemen-
tations and possible use cases to future work. In particular, we think that being able
to intelligently run the principles at a larger scale than manual execution is crucial for
evaluation of their applicability on libraries.

Theory Our preliminary definitions of behavior preservation need to be tested in their
usefulness with further generalization refactoring principles. Concerning App-Gen, it
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? (ℕ,≤)

? SortingAlgorithms
& CorrectnessProofs

Figure 7.1.: Underlying “generalization problem” students are asked to explore.

remains an open question whether it can be adequately described by categorical seman-
tics.

Implementation The MMT plugin could greatly benefit from graphical as well as func-
tional extensions. We refer the reader to the issue list at the repository in [Intellij-MMT].
In particular, we believe showing generalization errors within the editor would greatly
foster our conjectured App-Gen’s use cases, especially the one about educational value,
which we elaborate in more detail below.

Exploration of Educational Use Cases We imagine App-Gen could help students to
become acquainted with the ubiquitous practice of generalization in mathematics and
related subjects:

Generalization is the heartbeat of mathematics, and appears in many forms.
If teachers are unaware of its presence, and are not in the habit of getting
students to work at expressing their own generalizations, then mathematical
thinking is not taking place. ([Mas96])

Precisely, the authors would like to detail the following scenario they have in mind.
Usual mathematics and computer science studies’ curricula feature an introductory
course to algorithms and data structures in the first semester, which typically contains
a section on sorting algorithms. We propose students are assigned the task of finding a
suitable generalization for sort algorithms defined on lists of natural numbers as depicted
in Figure 7.1. In detail, the teaching process may go as follows:

1. The teacher introduces sorting algorithms on (ℕ,≤), while possibly hinting at
natural numbers being pawns for abstract ordered objects. Also, the algorithms
are proven to be correct for (ℕ,≤). The teacher provides a version of both the
algorithms and proofs in a formalization system, cf. the lower right corner in
Figure 7.1.

2. In tutorial sessions or as homework, students are asked how they would sort strings
and consequently how the sorting algorithms can be generalized.

3. In computer rooms, parallel to those conceptual discussions, students are encour-
aged to enter and try their generalizations within the system. By “try” we mean
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running App-Gen with the extension proposed above, namely that generalization
errors are graphically highlighted in the editor.

For freshmen the formalization system would need to offer a sufficiently simple GUI
frontend. Then, key takeaways could be:

• How many requirements do we have to put on the order such that the definition
of a sorted list and a sorting algorithm still make sense? Students can be asked
to try different flavors of ordered sets. For instance, the sortedness of a list (𝑎𝑖)𝑖
could be formalized in different ways and proven equivalent in (ℕ,≤):

∀𝑖. 𝑎𝑖 ≤ 𝑎𝑖+1 (the order’s transitivity is implicit)
∀𝑖, 𝑗. 𝑎𝑖 ≤ 𝑎𝑗 (the order’s reflexivity is implicit)

∀𝑖 < 𝑗. 𝑎𝑖 ≤ 𝑎𝑗 (generalizes previous ones)

The students can be asked where they think the equivalence will fail with more
weakly ordered sets before they try it out themselves and see those non-generalizable
definitions and proofs highlighted by the system.

• Which algorithms are still correct, i.e. sort according to one of the sortedness
definitions?

• Which algorithms are stable? This could be used to motivate strict weak orders.
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A. Appendix

A.1. Behavior Preservation of Multiplicative and Dividive
Groups

This section serves to show that our initial definition of behavior preservation in Def-
inition 3.3.1 is too strong for practical purposes and needs further revision in future
work. Consider the following axiomatization of groups via multiplication as usual and
via division [Mat17]:

1 theory MultiplicativeGroup =
2 U: type ❙
3 e: U ❙
4 op: U ⟶ U ⟶ U ❘ # #1 ∘ #2 ❙
5 inv: U ⟶ U ❙
6

7 associative: ⊦ … ❙
8 e_neutral: ⊦ … ❙
9 inv_inverse: ⊦ … ❙

10 ❚
11

12 theory DividiveGroup =
13 U: type ❙
14 e: U ❙
15 div: U ⟶ U ⟶ U ❘ # #1 / #2 ❙
16

17 /T Axiomatization from
18 "Matt F. (https://mathoverflow.net/users/44143/matt-f),
19 Wiener's axiomatization of the group law based on division
20 URL (version: 2017-08-20): https://mathoverflow.net/q/279161" ❙
21 div_neutral1: ⊦ ∀[a: U] div(a, a) ≐ e ❙
22 div_neutral2: ⊦ ∀[a: U] div(a, e) ≐ a ❙
23 div_cancellation: ⊦ ∀[a: U] ∀[b: U] ∀[c: U] (a / c) / (b / c) ≐ a / b ❙
24 ❚
25

26 view φ: MultiplicativeGroup -> DividiveGroup =
27 U = U ❙
28 e = e ❙
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29 op = [a, b] a / (e / b) ❙
30 inv = [a] e / a ❙
31

32 associative = … ❙
33 e_neutral = … ❙
34 inv_inverse = … ❙
35 ❚
36

37 view ψ: DividiveGroup -> MultiplicativeGroup =
38 U = U ❙
39 e = e ❙
40 div = [a, b] a ∘ (inv b) ❙
41

42 /T this amounts to saying that (a ∘ (inv a)) ≐ e ❙
43 div_neutral1 = … ❙
44

45 /T this amounts to saying that (a ∘ (inv e)) ≐ a ❙
46 div_neutral2: = … ❙
47

48 /T this amounts to saying that (a ∘ (inv c)) ∘ (inv (b ∘ (inv c))) ≐ a ∘

(inv b) ❙↪

49 div_cancellation: = … ❙
50 ❚

As intuition tells us, both theories should be behavior-preserving generalizations of
each other. However, behavior preservation as from Definition 3.3.1 is only fulfilled
if we consider some equational theory. Concretely, let us attempt to prove behavior
preservation for 𝜓. For it we need to specify preimages in DividiveGroup for every
declaration in MultiplicativeGroup. Doing so for U and e is straightforward, we just
choose the corresponding identically named declarations. Let us consider op. There we
can choose the preimage

𝑡 ∶= [𝑎, 𝑏]𝑎/(𝑒/𝑏) ∈ Obj(𝐷𝑖𝑣𝑖𝑑𝑖𝑣𝑒𝐺𝑟𝑜𝑢𝑝)

Indeed, applying the morphism 𝜓 yields op

𝜓(𝑡) = [𝑎, 𝑏] 𝑎 ∘ (inv 𝜓(𝑒/𝑏))
= [𝑎, 𝑏] 𝑎 ∘ (inv (𝑒 ∘ (inv 𝑏)))
= [𝑎, 𝑏] 𝑎 ∘ 𝑏
= 𝑜𝑝

where we especially made use of the group axioms in MultiplicativeGroup.
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A.2. Generalized Merge Sort on Tosets

1 theory MergeOnToset =
2 include ?Toset ❙
3 include ?PolymorphicLists ❙ /T Some imaginary theory of finite lists ❙
4

5 /T Merge two pre-sorted lists ❙
6 merge: List X ⟶ List X ⟶ List X ❙
7

8 /T Axioms on merge (≈ inductive definition) ❙
9 merge_base_case1: ⊦ ∀[l: List X] merge nil l ≐ l ❙

10 merge_base_case2: ⊦ ∀[l: List X] merge l nil ≐ l ❙
11 merge_ind_step: ⊦ ∀[x: X] ∀[y: X] ∀[xs: List X] ∀[ys: List X]
12 merge (cons x xs) (cons y ys) ≐
13 if (x ≤ₓ y) cons x (merge xs (cons y ys))
14 else cons y (merge (cons x xs) ys) ❙
15

16 /T Sort a list ❙
17 mergesort: List X ⟶ List X ❙
18 mergesort_base_case: ⊦ mergesort nil ≐ nil ❙
19 mergesort_ind_step: ⊦ ∀[l: List X] ∀[k: List X]
20 mergesort (l ::: k) ≐ merge (mergesort l) (mergesort k) ❙
21 ❚

A.3. Non-Terminating Behavior with App-Gen
We show an exemplary formalization for the non-terminating setting with App-Gen
from Figure 6.4:

1 theory Nat =
2 ℕ: type ❙
3 plus: ℕ ⟶ ℕ ❙
4 minus: ℕ ⟶ ℕ ❙
5 ❚
6

7 theory Nat' =
8 include ?Nat ❙
9

10 plus': ℕ ⟶ ℕ ❘ = plus ❙
11 ❚
12

13 view φ : ?Nat -> ?Nat' =
14 ℕ = ℕ ❙
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15 plus = minus ❙
16 minus = plus' ❙
17 ❚

Generalizing Nat′ along 𝜑 will indefinitely rewrite the plus expression in the highlighted
line to minus, plus, minus, …. Indeed our termination Lemma 6.2.1 does not apply
because 𝜑 is not the identity on Nat ∩ Nat′ = Nat.1

A.4. Pushout Example
Below we show an elaborated formalization for the example from Remark 5.4.1. The
pushout ListElem ↩ Elem ⇝ Nat results in the theory of lists over natural numbers

1 theory Elem =
2 elem: type ❙
3 ❚
4

5 theory Nat =
6 /T Natural numbers as usual with Peano axioms ❙
7

8 ℕ: type ❙
9 0: ℕ ❙

10 s: ℕ ⟶ ℕ ❙
11 plus: ℕ ⟶ ℕ ⟶ ℕ ❘ = … ❘ # #1 + #2 ❙
12

13 /T … ❙
14 ❚
15

16 view ElemToNat : Elem -> Nat =
17 elem = ℕ ❙
18 ❚
19

20 theory ListElem =
21 include ?Elem ❙
22

23 list: type ❙
24 nil: list ❙
25 cons: elem ⟶ list ⟶ list ❙
26

27 /T … ❙
28 ❚

1Beware that – speaking in the visual image of the commutative square with nodes 𝑅, 𝑆 and 𝑇 – here
we have 𝑅 = Nat and 𝑆 = 𝑇 = Nat′.
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