
Refactoring of Theory Graphs in Knowledge
Representation Systems
Bachelor Thesis in Computer Science

Navid Roux
navid.roux@fau.de

Advisors: Prof. Dr. Michael Kohlhase, PD Dr. Florian Rabe

Friedrich-Alexander-Universität Erlangen-Nürnberg

15th July 2019

Dear online visitor, want to dig into this topic? Have a look at the reading
guide at the end: Jump to Reading Guide

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 1 / 46

mailto:navid.roux@fau.de


Plan

1 Introduction

2 MMT

3 Framework for Generalization Refactorings

4 App-Gen

5 Conclusion

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 2 / 46



Refactorings

“Improve internal structure without changing observable behavior.”

“Neither add nor remove features.”

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 3 / 46



Refactorings

“Improve internal structure without changing observable behavior.”
“Neither add nor remove features.”

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 3 / 46



Refactorings on Theory Graphs

Objective: Help in creation & maintenance of formalizations
Reason:

need for formalization

verify pen & paper theorems feed MKM

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 4 / 46



Need For Formalization
Four Color Theorem

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 5 / 46

Source: Inductiveload on Wikimedia
Commons, CC BY-SA 3.0

https://commons.wikimedia.org/wiki/User:Inductiveload
http://creativecommons.org/licenses/by-sa/3.0/


Need For Formalization
Kepler Conjecture

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 6 / 46

Source: Mike Licht on Flickr, CC BY 2.0

https://www.flickr.com/photos/notionscapital/
https://creativecommons.org/licenses/by/2.0/


Need For Formalization
Feit-Thompson Theorem

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 7 / 46

Source: A. W. Walker on awwalker.com

https://awwalker.com/about/
https://awwalker.com/2017/02/05/the-orders-of-simple-groups/


Need For Formalization – MKM Perspective

Operations on mathematical knowledge
cataloguing
retrieval
refactoring
change propagation

Overcome One-Brain-Barrier & drive data analytics
⇒ need for formalization

Generalization Refactorings improve induced knowledge space

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 8 / 46



Need For Formalization – MKM Perspective

Operations on mathematical knowledge
cataloguing
retrieval
refactoring
change propagation

Overcome One-Brain-Barrier & drive data analytics
⇒ need for formalization
Generalization Refactorings improve induced knowledge space

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 8 / 46



Contribution

Focussing on refactorings to generalize, provide
Framework for generalization refactorings
Two principles

App-Gen
“application of ex. generalization”

Theory Splitting
omitted in presentation

IntelliJ plugin GUI for App-Gen
on top of the MMT plugin

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 9 / 46



Plan

1 Introduction

2 MMT

3 Framework for Generalization Refactorings

4 App-Gen

5 Conclusion

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 10 / 46



MMT

What is it?

Scalable module system for knowledge representation
esp. formal knowledge

Theoretical framework and implemented system
“MMT” vs. “MMT system”

Goals
Foundation independence
Minimalistic design
Standardized representation format

⇒ Organize knowledge into theories and morphisms

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 11 / 46



MMT

What is it?
Scalable module system for knowledge representation

esp. formal knowledge
Theoretical framework and implemented system

“MMT” vs. “MMT system”

Goals
Foundation independence
Minimalistic design
Standardized representation format

⇒ Organize knowledge into theories and morphisms

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 11 / 46



MMT

What is it?
Scalable module system for knowledge representation

esp. formal knowledge
Theoretical framework and implemented system

“MMT” vs. “MMT system”
Goals

Foundation independence
Minimalistic design
Standardized representation format

⇒ Organize knowledge into theories and morphisms

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 11 / 46



MMT

What is it?
Scalable module system for knowledge representation

esp. formal knowledge
Theoretical framework and implemented system

“MMT” vs. “MMT system”
Goals

Foundation independence

Minimalistic design
Standardized representation format

⇒ Organize knowledge into theories and morphisms

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 11 / 46



MMT

What is it?
Scalable module system for knowledge representation

esp. formal knowledge
Theoretical framework and implemented system

“MMT” vs. “MMT system”
Goals

Foundation independence
Minimalistic design
Standardized representation format

⇒ Organize knowledge into theories and morphisms

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 11 / 46



MMT

What is it?
Scalable module system for knowledge representation

esp. formal knowledge
Theoretical framework and implemented system

“MMT” vs. “MMT system”
Goals

Foundation independence
Minimalistic design
Standardized representation format

⇒ Organize knowledge into theories and morphisms

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 11 / 46



MMT Theories

theory Monoid =
include ?LF ❙
include ?NatDed ❙

U: type ❙
e: U ❙
op: U ⟶ U ⟶ U ❘ # #1 ∘ #2 ❙
associative:
⊦ ∀ [a: U] ∀ [b: U] ∀ [c: U] (a ∘ b) ∘ c ≐ a ∘ (b ∘ c) ❙

neutral: U ⟶ prop
❘ = [e'] ∀ [a: U] (a ∘ e' ≐ a) ∧ (e' ∘ a ≐ a) ❙

e_neutral: ⊦ neutral e ❙

e_unique: ⊦ ∀ [e': U] (neutral e') ⟹ e' ≐ e
❘ = … ❙ /T Proof omitted ❙

❚

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 12 / 46



MMT Morphisms
Primer

Morphisms 𝑆 ⇝ 𝑇 assign every 𝑆-declaration a 𝑇 -expression
Consider

theory Monoid =
U: type ❙
e: U ❙
op: U ⟶ U ⟶ U ❙
associative: … ❙

neutral: … ❘ = … ❙
e_neutral: … ❙

e_unique: … ❘ = … ❙
❚

theory Nat =
ℕ: type ❙
0: ℕ ❙
s: ℕ ⟶ ℕ ❙

/T Peano axioms … ❙

plus: ℕ ⟶ ℕ ⟶ ℕ ❘ = … ❙

One possibility: U ↦ ℕ, e ↦ 0, op ↦ plus, …
N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 13 / 46



MMT Morphisms
Primer (cont.)

view σ : Monoid -> Nat =
U = ℕ ❙
e = 0 ❙
op = plus ❙
associative = … ❙
e_neutral = … ❙

❚

Only need assignment to undefined declarations
Gives rise to homomorphic extension 𝜎 ∶ Obj(Monoid) → Obj(Nat)

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 14 / 46



MMT Morphisms
Truth Preservation

Assume well-typedness everywhere.
theory Monoid =
// … ❙

e_unique: ⊦ ∀ [e': U] (neutral e') ⟹ e' ≐ e
❘ = … ❙ /T Proof omitted ❙

❚

Then we get

𝜎(e_unique)
: ⊦ ∀ [n: ℕ] (neutral n) ⟹ n ≐ 0
= …

Corollary (Truth Preservation)
Morphisms translate theorems to theorems.

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 15 / 46



MMT Morphisms
Truth Preservation

Assume well-typedness everywhere.
theory Monoid =
// … ❙

e_unique: ⊦ ∀ [e': U] (neutral e') ⟹ e' ≐ e
❘ = … ❙ /T Proof omitted ❙

❚

Then we get

𝜎(e_unique)
: ⊦ ∀ [n: ℕ] (neutral n) ⟹ n ≐ 0
= …

Corollary (Truth Preservation)
Morphisms translate theorems to theorems.
N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 15 / 46



MMT Morphisms
Meaning

They represent syntactically

translation
specialization
refinement

from poorer into richer theories.
Model-theoretically they represent model induction of more general models

every Nat-model induces a Monoid-model.

TopologicalSpace ⇝ MetricSpace ⇝ NormedVectorSpace ⇝ HilbertSpace

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 16 / 46



MMT Morphisms
Meaning

They represent syntactically
translation
specialization
refinement

from poorer into richer theories.

Model-theoretically they represent model induction of more general models

every Nat-model induces a Monoid-model.

TopologicalSpace ⇝ MetricSpace ⇝ NormedVectorSpace ⇝ HilbertSpace

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 16 / 46



MMT Morphisms
Meaning

They represent syntactically
translation
specialization
refinement

from poorer into richer theories.
Model-theoretically they represent model induction of more general models

every Nat-model induces a Monoid-model.

TopologicalSpace ⇝ MetricSpace ⇝ NormedVectorSpace ⇝ HilbertSpace

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 16 / 46



MMT Morphisms
Meaning

They represent syntactically
translation
specialization
refinement

from poorer into richer theories.
Model-theoretically they represent model induction of more general models

every Nat-model induces a Monoid-model.

TopologicalSpace ⇝ MetricSpace ⇝ NormedVectorSpace ⇝ HilbertSpace

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 16 / 46



Plan

1 Introduction

2 MMT

3 Framework for Generalization Refactorings

4 App-Gen

5 Conclusion

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 17 / 46



Generalizations

Definition
We call a theory 𝐺 a (theory-level) generalization of a theory 𝑇 if there
is a morphism 𝑔 ∶ 𝐺 ⇝ 𝑇 .

A theory-level generalization principle is a partial algorithm accepting
𝑇 and outputting (𝐺, 𝑔).

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 18 / 46



Generalizations

Definition
We call a theory 𝐺 a (theory-level) generalization of a theory 𝑇 if there
is a morphism 𝑔 ∶ 𝐺 ⇝ 𝑇 .
A theory-level generalization principle is a partial algorithm accepting
𝑇 and outputting (𝐺, 𝑔).

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 18 / 46



Behavior Preservation
Primer

When is 𝐺 ⇝ 𝑇 behavior-preserving?
Prevent information loss opposes generalization!
Prevent information addition

Intuition for inclusions
Not behavior-preserving: removing undefined declarations

e.g. Monoid ↪ Group
Behavior-preserving: removing defined declarations

e.g. all theorems of a theory
Intuition in general: preserving iff. the same theorems can be derived?
⇒ Impossible, but close!

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 19 / 46



Behavior Preservation
Primer

When is 𝐺 ⇝ 𝑇 behavior-preserving?
Prevent information loss opposes generalization!
Prevent information addition

Intuition for inclusions
Not behavior-preserving: removing undefined declarations

e.g. Monoid ↪ Group
Behavior-preserving: removing defined declarations

e.g. all theorems of a theory

Intuition in general: preserving iff. the same theorems can be derived?
⇒ Impossible, but close!

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 19 / 46



Behavior Preservation
Primer

When is 𝐺 ⇝ 𝑇 behavior-preserving?
Prevent information loss opposes generalization!
Prevent information addition

Intuition for inclusions
Not behavior-preserving: removing undefined declarations

e.g. Monoid ↪ Group
Behavior-preserving: removing defined declarations

e.g. all theorems of a theory
Intuition in general: preserving iff. the same theorems can be derived?
⇒ Impossible, but close!

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 19 / 46



Behavior Preservation
Definition

Definition
A generalization 𝑔 ∶ 𝐺 ⇝ 𝑇 is called behavior-preserving if

𝑇 ⊆ 𝑔(Obj(𝐺))

where
Obj(⋅) denotes all closed well-typed 𝐺-expressions
⊆ as follows: for every (𝑐 ∶ 𝐸[= 𝑒]) ∈ 𝑇 ♭ either 𝑐 ∈ 𝑔(Obj(𝐺)) or
𝑒 ∈ 𝑔(Obj(𝐺)).

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 20 / 46



Behavior Preservation
Fulfilled examples

𝑇 ⊆ 𝑔(Obj(𝐺))

Removing undefined declarations not behavior-preserving
Removing defined declarations behavior-preserving
Following chain not behavior-preserving

TopologicalSpace ⇝ MetricSpace ⇝ NormedVectorSpace ⇝ HilbertSpace

⇒ Weaken to behavior preservation to subset of 𝑇

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 21 / 46



Behavior Preservation
Weakening to subset

Definition
A generalization 𝑔 ∶ 𝐺 ⇝ 𝑇 is called behavior-preserving wrt. 𝑇 ′ ⊆ 𝑇 if

𝑇 ′ ⊆ 𝑔(Obj(𝐺))

every morphism behavior-preserving wrt. its image

TopologicalSpace “behavior-preserving” wrt. continuity definitions in
MetricSpace
MetricSpace “behavior-preserving” wrt. continuity definitions in
NormedVectorSpace
…

⇒ Weaken to allow 𝛼𝛽𝜂 equational theory and more (future work)

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 22 / 46



Behavior Preservation
Weakening to subset

Definition
A generalization 𝑔 ∶ 𝐺 ⇝ 𝑇 is called behavior-preserving wrt. 𝑇 ′ ⊆ 𝑇 if

𝑇 ′ ⊆ 𝑔(Obj(𝐺))

every morphism behavior-preserving wrt. its image
TopologicalSpace “behavior-preserving” wrt. continuity definitions in
MetricSpace
MetricSpace “behavior-preserving” wrt. continuity definitions in
NormedVectorSpace
…

⇒ Weaken to allow 𝛼𝛽𝜂 equational theory and more (future work)

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 22 / 46



Behavior Preservation
Weakening to subset

Definition
A generalization 𝑔 ∶ 𝐺 ⇝ 𝑇 is called behavior-preserving wrt. 𝑇 ′ ⊆ 𝑇 if

𝑇 ′ ⊆ 𝑔(Obj(𝐺))

every morphism behavior-preserving wrt. its image
TopologicalSpace “behavior-preserving” wrt. continuity definitions in
MetricSpace
MetricSpace “behavior-preserving” wrt. continuity definitions in
NormedVectorSpace
…

⇒ Weaken to allow 𝛼𝛽𝜂 equational theory and more (future work)

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 22 / 46



Behavior Preservation
Mergesort – behavior-preserving to relevant subset

theory MergeOnNat =
include ?Nat ❙
include ?PolymorphicLists ❙

merge: ℕʷ ⟶ ℕʷ ⟶ ℕʷ ❙

merge_ind_step: ⊦ …
merge (x::xs) (y::ys) ≐
if (x ≤ y)
x :: (merge xs (y::ys))

else
y :: (merge (x::xs) ys)

❙

mergesort: ℕʷ ⟶ ℕʷ ❙
// … ❙

❚

theory MergeOnNat =
include ?Nat ❙
include ?PolymorphicLists ❙

merge: ℕʷ ⟶ ℕʷ ⟶ ℕʷ ❙

merge_ind_step: ⊦ …
merge (x::xs) (y::ys) ≐
if (x ≤ y)
x :: (merge xs (y::ys))

else
y :: (merge (x::xs) ys)

❙

mergesort: ℕʷ ⟶ ℕʷ ❙
// … ❙

❚

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 23 / 46



Behavior Preservation
Mergesort – behavior-preserving to relevant subset

theory MergeOnToset =
include ?Toset ❙
include ?PolymorphicLists ❙

merge: Xʷ ⟶ Xʷ ⟶ Xʷ ❙

merge_ind_step: ⊦ …
merge (x::xs) (y::ys) ≐
if (x ≤ₓ y)
x :: (merge xs (y::ys))
else
y :: (merge (x::xs) ys)

❙

mergesort: Xʷ ⟶ Xʷ ❙
// … ❙
❚

theory MergeOnNat =
include ?Nat ❙
include ?PolymorphicLists ❙

merge: ℕʷ ⟶ ℕʷ ⟶ ℕʷ ❙

merge_ind_step: ⊦ …
merge (x::xs) (y::ys) ≐
if (x ≤ y)
x :: (merge xs (y::ys))

else
y :: (merge (x::xs) ys)

❙

mergesort: ℕʷ ⟶ ℕʷ ❙
// … ❙

❚

theory MergeOnNat =
include ?Nat ❙
include ?PolymorphicLists ❙

merge: ℕʷ ⟶ ℕʷ ⟶ ℕʷ ❙

merge_ind_step: ⊦ …
merge (x::xs) (y::ys) ≐
if (x ≤ y)
x :: (merge xs (y::ys))

else
y :: (merge (x::xs) ys)

❙

mergesort: ℕʷ ⟶ ℕʷ ❙
// … ❙

❚

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 23 / 46



Behavior Preservation
Mergesort – behavior-preserving to relevant subset

theory MergeOnToset =
include ?Toset ❙
include ?PolymorphicLists ❙

merge: Xʷ ⟶ Xʷ ⟶ Xʷ ❙

merge_ind_step: ⊦ …
merge (x::xs) (y::ys) ≐
if (x ≤ₓ y)
x :: (merge xs (y::ys))
else
y :: (merge (x::xs) ys)

❙

mergesort: Xʷ ⟶ Xʷ ❙
// … ❙
❚

theory MergeOnNat =
include ?Nat ❙
include ?PolymorphicLists ❙

merge: ℕʷ ⟶ ℕʷ ⟶ ℕʷ ❙

merge_ind_step: ⊦ …
merge (x::xs) (y::ys) ≐
if (x ≤ y)
x :: (merge xs (y::ys))

else
y :: (merge (x::xs) ys)

❙

mergesort: ℕʷ ⟶ ℕʷ ❙
// … ❙

❚

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 23 / 46



Plan

1 Introduction

2 MMT

3 Framework for Generalization Refactorings

4 App-Gen

5 Conclusion

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 24 / 46



App-Gen
Overall task

Abstract task: Given

𝑅 𝑆

𝑇

𝜑

come up with

𝑅 𝑆

𝐺 𝑇

𝜑

𝑔

Concrete task: Given

Toset Nat

MergeOnNat

𝜑

come up with

Toset Nat

MergeOnToset MergeOnNat

𝜑

𝑔

“Generalize 𝑇 along 𝜑”

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 25 / 46



App-Gen
Overall task

Abstract task: Given

𝑅 𝑆

𝑇

𝜑

come up with

𝑅 𝑆

𝐺 𝑇

𝜑

𝑔

Concrete task: Given

Toset Nat

MergeOnNat

𝜑

come up with

Toset Nat

MergeOnToset MergeOnNat

𝜑

𝑔

“Generalize 𝑇 along 𝜑”

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 25 / 46



App-Gen
Overall task

Abstract task: Given

𝑅 𝑆

𝑇

𝜑

come up with

𝑅 𝑆

𝐺 𝑇

𝜑

𝑔

Concrete task: Given

Toset Nat

MergeOnNat

𝜑

come up with

Toset Nat

MergeOnToset MergeOnNat

𝜑

𝑔

“Generalize 𝑇 along 𝜑”

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 25 / 46



How to generalize?

Replace include ?Nat by include ?Toset

Replace ℕ by X

ℕ
𝑋

Replace ≤ by ≤ₓ

≤
≤𝑥

theory Toset =
X: type ❙
≤ₓ: X ⟶ X ⟶ prop ❙

ax_antisymmetry: ⊦ … ❙
ax_transivitivty: ⊦ … ❙
ax_connexity: ⊦ … ❙
❚

view φ : Toset -> Nat =
X = ℕ ❙
≤ₓ = ≤ ❙

ax_antisymmetry = … ❙
ax_transitivity = … ❙
ax_connexity = … ❙

❚

⇒ Replacements given by morphism read backwards

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 26 / 46



How to generalize?

Replace include ?Nat by include ?Toset

Replace ℕ by X

ℕ
𝑋

Replace ≤ by ≤ₓ

≤
≤𝑥

theory Toset =
X: type ❙
≤ₓ: X ⟶ X ⟶ prop ❙

ax_antisymmetry: ⊦ … ❙
ax_transivitivty: ⊦ … ❙
ax_connexity: ⊦ … ❙
❚

view φ : Toset -> Nat =
X = ℕ ❙
≤ₓ = ≤ ❙

ax_antisymmetry = … ❙
ax_transitivity = … ❙
ax_connexity = … ❙

❚

⇒ Replacements given by morphism read backwards
N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 26 / 46



How to generalize?

Replace include ?Nat by include ?Toset

Replace ℕ by X ℕ
𝑋

Replace ≤ by ≤ₓ ≤
≤𝑥

theory Toset =
X: type ❙
≤ₓ: X ⟶ X ⟶ prop ❙

ax_antisymmetry: ⊦ … ❙
ax_transivitivty: ⊦ … ❙
ax_connexity: ⊦ … ❙
❚

view φ : Toset -> Nat =
X = ℕ ❙
≤ₓ = ≤ ❙

ax_antisymmetry = … ❙
ax_transitivity = … ❙
ax_connexity = … ❙

❚

⇒ Replacements given by morphism read backwards
N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 26 / 46



App-Gen-0: A First Version

Definition (App-Gen-0)
Build 𝐺 and 𝑔 ∶ 𝐺 ⇝ 𝑇 :

1 rewrite include ?S to include ?R
2 iteratively rewrite remaining declarations 𝛿 ∈ 𝑇 using

𝑐′

𝑐
𝑑
𝑑′

for (𝑐 ∶= 𝑐′) ∈ 𝜑 and rewritten 𝑑′ of 𝑑.
3 adopt 𝑔(𝑑′) ∶= 𝑑 for every rewritten 𝑑′ of 𝑑

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 27 / 46



Mergesort Revisited

theory MergeOnToset =
include ?Toset ❙
include ?PolymorphicLists ❙

merge: Xʷ ⟶ Xʷ ⟶ Xʷ ❙

merge_ind_step: ⊦ …
merge (x::xs) (y::ys) ≐
if (x ≤ₓ y)
x :: (merge xs (y::ys))
else
y :: (merge (x::xs) ys)

❙

mergesort: Xʷ ⟶ Xʷ ❙
// … ❙
❚

theory MergeOnNat =
include ?Nat ❙
include ?PolymorphicLists ❙

merge: ℕʷ ⟶ ℕʷ ⟶ ℕʷ ❙

merge_ind_step: ⊦ …
merge (x::xs) (y::ys) ≐
if (x ≤ y)
x :: (merge xs (y::ys))

else
y :: (merge (x::xs) ys)

❙

mergesort: ℕʷ ⟶ ℕʷ ❙
// … ❙

❚

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 28 / 46



App-Gen-0: Results I
Assume the generated theory 𝐺 is well-typed, then

Lemma
The morphism 𝑔 is well-typed and the square

𝑅 𝑆

𝐺 𝑇

𝜑

𝑔

commutes.

Corollary (Behavior Preservation)
𝑔 ∶ 𝐺 ⇝ 𝑇 is a behavior-preserving generalization wrt.

𝑇 ∖ 𝑆
(𝑇 ∖ 𝑆) ∪ 𝑆′ if 𝜑 was beh.-preserving wrt. 𝑆′ ⊆ 𝑆.

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 29 / 46



App-Gen-0: Results I
Assume the generated theory 𝐺 is well-typed, then

Lemma
The morphism 𝑔 is well-typed and the square

𝑅 𝑆

𝐺 𝑇

𝜑

𝑔

commutes.

Corollary (Behavior Preservation)
𝑔 ∶ 𝐺 ⇝ 𝑇 is a behavior-preserving generalization wrt.

𝑇 ∖ 𝑆
(𝑇 ∖ 𝑆) ∪ 𝑆′ if 𝜑 was beh.-preserving wrt. 𝑆′ ⊆ 𝑆.

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 29 / 46



App-Gen-0: Limitations
By example

theory NormedVectorspaceThms =
include ?NormedVectorspace ❙

cauchy: (ℕ ⟶ Y) ⟶ prop ❘ = [f] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] ∀[m: ℕ]
(n ≥ N ∧ m ≥ N) ⇒ ((norm ((f n) - (f m))) < ɛ) ❙

theory NormedVectorspaceThms =
include ?NormedVectorspace ❙

cauchy: (ℕ ⟶ Y) ⟶ prop ❘ = [f] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] ∀[m: ℕ]
(n ≥ N ∧ m ≥ N) ⇒ ((norm ((f n) - (f m))) < ɛ) ❙

convergent_to: (ℕ ⟶ Y) ⟶ Y ⟶ prop ❘ = [f, y] ∀[ɛ: ℝ] ∃[N: ℕ]
∀[n: ℕ]↪

(n ≥ N) ⇒ ((norm ((f n) - y)) < ɛ) ❙

/T Lipschitz continuity of an endofunction ❙
lipschitz: (Y ⟶ Y) ⟶ prop ❘ = [f] ∀[y₁: Y] ∀[y₂: Y]
norm ((f y₁) - (f y₂)) ≤ norm (y₁ - y₂) ❙

❚

Objective: Generalize to metric spaces

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 30 / 46



App-Gen-0: Limitations
By example

theory NormedVectorspaceThms =
include ?NormedVectorspace ❙

cauchy: (ℕ ⟶ Y) ⟶ prop ❘ = [f] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] ∀[m: ℕ]
(n ≥ N ∧ m ≥ N) ⇒ ((norm ((f n) - (f m))) < ɛ) ❙

convergent_to: (ℕ ⟶ Y) ⟶ Y ⟶ prop ❘ = [f, y] ∀[ɛ: ℝ] ∃[N: ℕ]
∀[n: ℕ]↪

(n ≥ N) ⇒ ((norm ((f n) - y)) < ɛ) ❙

theory NormedVectorspaceThms =
include ?NormedVectorspace ❙

cauchy: (ℕ ⟶ Y) ⟶ prop ❘ = [f] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] ∀[m: ℕ]
(n ≥ N ∧ m ≥ N) ⇒ ((norm ((f n) - (f m))) < ɛ) ❙

convergent_to: (ℕ ⟶ Y) ⟶ Y ⟶ prop ❘ = [f, y] ∀[ɛ: ℝ] ∃[N: ℕ]
∀[n: ℕ]↪

(n ≥ N) ⇒ ((norm ((f n) - y)) < ɛ) ❙

/T Lipschitz continuity of an endofunction ❙
lipschitz: (Y ⟶ Y) ⟶ prop ❘ = [f] ∀[y₁: Y] ∀[y₂: Y]
norm ((f y₁) - (f y₂)) ≤ norm (y₁ - y₂) ❙

❚

Objective: Generalize to metric spaces

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 30 / 46



App-Gen-0: Limitations
By example

theory NormedVectorspaceThms =
include ?NormedVectorspace ❙

cauchy: (ℕ ⟶ Y) ⟶ prop ❘ = [f] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] ∀[m: ℕ]
(n ≥ N ∧ m ≥ N) ⇒ ((norm ((f n) - (f m))) < ɛ) ❙

convergent_to: (ℕ ⟶ Y) ⟶ Y ⟶ prop ❘ = [f, y] ∀[ɛ: ℝ] ∃[N: ℕ]
∀[n: ℕ]↪

(n ≥ N) ⇒ ((norm ((f n) - y)) < ɛ) ❙

/T Lipschitz continuity of an endofunction ❙
lipschitz: (Y ⟶ Y) ⟶ prop ❘ = [f] ∀[y₁: Y] ∀[y₂: Y]
norm ((f y₁) - (f y₂)) ≤ norm (y₁ - y₂) ❙

❚

Objective: Generalize to metric spaces
N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 30 / 46



App-Gen-0: Limitations
By example (cont.)

MetricSpace NormedVectorSpace

𝐺 NormedVectorSpaceThms

𝜑

𝑔

theory MetricSpace =
X : type ❙
d: X ⟶ X ⟶ ℝ ❙
❚

theory NormedVectorspace =
Y: type ❙
norm: Y ⟶ ℝ ❙
minus: Y ⟶ Y ⟶ Y
❘ # 1 - 2 ❙

❚

view NormedAsMetricSpace : ?MetricSpace -> ?NormedVectorspace =
X = Y ❙
d = [a,b] norm (a - b) ❙
❚

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 31 / 46



App-Gen-0: Limitations
By example (cont.)

Employed rewrite rules

𝑌
𝑋

𝜆𝑎, 𝑏. norm (𝑎 − 𝑏)
d

insufficient to rewrite
cauchy: (ℕ ⟶ Y) ⟶ prop ❘ = [f] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] ∀[m: ℕ]
(n ≥ N ∧ m ≥ N) ⇒ ((norm ((f n) - (f m))) < ɛ) ❙

Would like to have

𝑌
𝑋

𝜆𝑎, 𝑏. norm (𝑎 − 𝑏)
d

norm (𝑎 − 𝑏)
d 𝑎 𝑏

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 32 / 46



App-Gen-0: Limitations
By example (cont.)

Employed rewrite rules

𝑌
𝑋

𝜆𝑎, 𝑏. norm (𝑎 − 𝑏)
d

insufficient to rewrite
cauchy: (ℕ ⟶ Y) ⟶ prop ❘ = [f] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] ∀[m: ℕ]
(n ≥ N ∧ m ≥ N) ⇒ ((norm ((f n) - (f m))) < ɛ) ❙

Would like to have

𝑌
𝑋

𝜆𝑎, 𝑏. norm (𝑎 − 𝑏)
d

norm (𝑎 − 𝑏)
d 𝑎 𝑏

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 32 / 46



App-Gen-1: A Revision

Definition (App-Gen-1)
Build 𝐺 and 𝑔 ∶ 𝐺 ⇝ 𝑇 :

1 rewrite include ?S to include ?R
2 iteratively rewrite remaining declarations 𝛿 ∈ 𝑇 using

𝑐′

𝑐
𝑠𝜎

𝑐 𝜎(𝑥1) … 𝜎(𝑥𝑛) dom(𝜎) = {𝑥1, … , 𝑥𝑛} 𝑑
𝑑′

for (𝑐 ∶= 𝑐′), (𝑐 ∶= 𝜆𝑥1, … , 𝑥𝑛. 𝑠) ∈ 𝜑 and rewritten 𝑑′ of 𝑑.
3 adopt 𝑔(𝑑′) ∶= 𝑑 for every rewritten 𝑑′ of 𝑑

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 33 / 46



Live Demo
Skip after backup slides

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 34 / 46







App-Gen-1: Outlook

In general we need a strong enough equational theory
Might include user-defined 𝑇 -theorems

⇒ Complexity of higher-order rewriting and unification

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 37 / 46



Plan

1 Introduction

2 MMT

3 Framework for Generalization Refactorings

4 App-Gen

5 Conclusion

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 38 / 46



Conclusion

Summary
Refactorings useful on formalized mathematics

Framework for generalization refactorings
𝐺 generalization of 𝑇 :⇔ there is a morphism 𝑔 ∶ 𝐺 ⇝ 𝑇
Behavior-preserving wrt. 𝑇 :⇔ 𝑇 ⊆ 𝑔(𝐺)

App-Gen captures abstraction along morphisms:
𝑅 𝑆

𝐺 𝑇
Prototypical GUI for App-Gen

Future Work
Evaluation of theory & applicability
Measures to drive automated application
Educational usecase

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 39 / 46



Conclusion

Summary
Refactorings useful on formalized mathematics
Framework for generalization refactorings

𝐺 generalization of 𝑇 :⇔ there is a morphism 𝑔 ∶ 𝐺 ⇝ 𝑇
Behavior-preserving wrt. 𝑇 :⇔ 𝑇 ⊆ 𝑔(𝐺)

App-Gen captures abstraction along morphisms:
𝑅 𝑆

𝐺 𝑇
Prototypical GUI for App-Gen

Future Work
Evaluation of theory & applicability
Measures to drive automated application
Educational usecase

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 39 / 46



Conclusion

Summary
Refactorings useful on formalized mathematics
Framework for generalization refactorings

𝐺 generalization of 𝑇 :⇔ there is a morphism 𝑔 ∶ 𝐺 ⇝ 𝑇
Behavior-preserving wrt. 𝑇 :⇔ 𝑇 ⊆ 𝑔(𝐺)

App-Gen captures abstraction along morphisms:
𝑅 𝑆

𝐺 𝑇

Prototypical GUI for App-Gen
Future Work

Evaluation of theory & applicability
Measures to drive automated application
Educational usecase

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 39 / 46



Conclusion

Summary
Refactorings useful on formalized mathematics
Framework for generalization refactorings

𝐺 generalization of 𝑇 :⇔ there is a morphism 𝑔 ∶ 𝐺 ⇝ 𝑇
Behavior-preserving wrt. 𝑇 :⇔ 𝑇 ⊆ 𝑔(𝐺)

App-Gen captures abstraction along morphisms:
𝑅 𝑆

𝐺 𝑇
Prototypical GUI for App-Gen

Future Work
Evaluation of theory & applicability
Measures to drive automated application
Educational usecase

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 39 / 46



Conclusion

Summary
Refactorings useful on formalized mathematics
Framework for generalization refactorings

𝐺 generalization of 𝑇 :⇔ there is a morphism 𝑔 ∶ 𝐺 ⇝ 𝑇
Behavior-preserving wrt. 𝑇 :⇔ 𝑇 ⊆ 𝑔(𝐺)

App-Gen captures abstraction along morphisms:
𝑅 𝑆

𝐺 𝑇
Prototypical GUI for App-Gen

Future Work
Evaluation of theory & applicability
Measures to drive automated application
Educational usecase

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 39 / 46



Appendix

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 40 / 46



Reading Guide I

An incomplete list of introductory references I would have personally
recommended to my former me who desired to dive into this presentation’s
topics.

My Thesis: [Rou19]
Mathematical Knowledge Management: [Koh14; Car+19]
MMT:

Overview: [MMT; Rab18]
Tutorial for Formalization: [OMT]
MMT Plugin for IntelliJ IDEA: [Intellij-MMT]
Categorical constructions, esp. colimits: [Rab17]1

1This one is not really introductory, but I found some of the ideas very enlightening
and deepening my understanding of formal systems. Even without understanding all
details, it is a valuable read for exactly this reason.
N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 41 / 46



Reading Guide II

Refactoring
Pioneering works: [Opd92; Fow19]2
Type Abstraction in Software Engineering: [BFS07; Tip07]3
Behavior Preservation, short Survey on Refactoring: [Whi13,
chs. 7.4 – 7.5]

Last, but not least: talking to people!
Especially my advisors, but as well other people at the research group.

As always, dig down the rabbit hole if you want to know something in great
detail. In case you want to know more how my work relates to others,
have a look at the related work section in my thesis [Rou19, ch. 2.3].

2Primarily to get a feel for what software engineers would call refactoring. You may
particularly peek at how [Opd92] proves behavior preservation properties.

3These works do “subtype lifting” while App-Gen does the more general “morphism
lifting”.
N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 42 / 46



References I

Markus Bach, Florian Forster, and Friedrich Steimann.
“Declared Type Generalization Checker: An Eclipse
Plug-In for Systematic Programming with More General
Types”. In: Fundamental Approaches to Software
Engineering. Ed. by Matthew B. Dwyer and
Antónia Lopes. Vol. 4422. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 117–120. isbn:
978-3-540-71288-6 978-3-540-71289-3. doi:
10.1007/978-3-540-71289-3_10. url:
http://link.springer.com/10.1007/978-3-540-
71289-3_10 (visited on 03/12/2019).
Jacques Carette et al. “Big Math and the One-Brain
Barrier – A Position Paper and Architecture Proposal”.
submitted to Mathematical Intelligencer. 2019. url:
https://arxiv.org/abs/1904.10405.

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 43 / 46

https://doi.org/10.1007/978-3-540-71289-3_10
http://link.springer.com/10.1007/978-3-540-71289-3_10
http://link.springer.com/10.1007/978-3-540-71289-3_10
https://arxiv.org/abs/1904.10405


References II

Martin Fowler. Refactoring: improving the design of
existing code. Second edition. Addison-Wesley signature
series. OCLC: on1064139838. Boston: Addison-Wesley,
2019. 418 pp. isbn: 978-0-13-475759-9.
UniFormal/IntelliJ-MMT – An IntelliJ-Plugin for MMT.
url: https://github.com/UniFormal/IntelliJ-MMT
(visited on 06/13/2019).
Michael Kohlhase. “Mathematical Knowledge
Management: Transcending the One-Brain-Barrier with
Theory Graphs”. In: EMS Newsletter (June 2014),
pp. 22–27. url: https://kwarc.info/people/
mkohlhase/papers/ems13.pdf.
UniFormal/MMT – The MMT Language and System.
url: https://github.com/UniFormal/MMT (visited on
10/24/2017).

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 44 / 46

https://github.com/UniFormal/IntelliJ-MMT
https://kwarc.info/people/mkohlhase/papers/ems13.pdf
https://kwarc.info/people/mkohlhase/papers/ems13.pdf
https://github.com/UniFormal/MMT


References III

Michael Kohlhase and Dennis Müller. OMDoc/MMT
Tutorial for Mathematicians. url: https:
//gl.mathhub.info/Tutorials/Mathematicians/
blob/master/tutorial/mmt-math-tutorial.pdf
(visited on 10/07/2017).
William F. Opdyke. “Refactoring Object-oriented
Frameworks”. PhD thesis. Champaign, IL, USA: University
of Illinois at Urbana-Champaign, 1992.
Florian Rabe. “How to Identify, Translate, and Combine
Logics?” In: Journal of Logic and Computation 27.6
(2017), pp. 1753–1798.
Florian Rabe. “MMT: A Foundation-Independent Logical
Framework”. Online Documentation. 2018. url:
https://kwarc.info/people/frabe/Research/rabe_
mmtsys_18.pdf.

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 45 / 46

https://gl.mathhub.info/Tutorials/Mathematicians/blob/master/tutorial/mmt-math-tutorial.pdf
https://gl.mathhub.info/Tutorials/Mathematicians/blob/master/tutorial/mmt-math-tutorial.pdf
https://gl.mathhub.info/Tutorials/Mathematicians/blob/master/tutorial/mmt-math-tutorial.pdf
https://kwarc.info/people/frabe/Research/rabe_mmtsys_18.pdf
https://kwarc.info/people/frabe/Research/rabe_mmtsys_18.pdf


References IV

Navid Roux. Refactoring of Theory Graphs in Knowledge
Representation Systems. B.Sc. Thesis. July 2019. url:
https://gl.kwarc.info/supervision/BSc-
archive/blob/master/2019/Roux_Navid.pdf.
Frank Tip. “Refactoring Using Type Constraints”. In:
Static Analysis. Ed. by Hanne Riis Nielson and
Gilberto Filé. Springer Berlin Heidelberg, 2007, pp. 1–17.
isbn: 978-3-540-74061-2.
Iain Johnston Whiteside. “Refactoring Proofs”.
PhD thesis. Edinburgh: The University of Edinburgh,
2013. url: https://www.era.lib.ed.ac.uk/handle/
1842/7970?show=full.

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 46 / 46

https://gl.kwarc.info/supervision/BSc-archive/blob/master/2019/Roux_Navid.pdf
https://gl.kwarc.info/supervision/BSc-archive/blob/master/2019/Roux_Navid.pdf
https://www.era.lib.ed.ac.uk/handle/1842/7970?show=full
https://www.era.lib.ed.ac.uk/handle/1842/7970?show=full

	Introduction
	MMT
	Framework for Generalization Refactorings
	App-Gen
	Conclusion
	References
	References

