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Refactorings

“Improve internal structure without changing observable behavior.”

“Neither add nor remove features.”
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Refactorings on Theory Graphs

Objective: Help in creation & maintenance of formalizations
Reason:

need for formalization

verify pen & paper theorems feed MKM
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Need For Formalization
Four Color Theorem
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Source: Inductiveload on Wikimedia
Commons, CC BY-SA 3.0

https://commons.wikimedia.org/wiki/User:Inductiveload
http://creativecommons.org/licenses/by-sa/3.0/


Need For Formalization
Kepler Conjecture
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Need For Formalization
Feit-Thompson Theorem
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Source: A. W. Walker on awwalker.com

https://awwalker.com/about/
https://awwalker.com/2017/02/05/the-orders-of-simple-groups/


Need For Formalization – MKM Perspective

Operations on mathematical knowledge
cataloguing
retrieval
refactoring
change propagation

Overcome One-Brain-Barrier & drive data analytics
⇒ need for formalization

Generalization Refactorings improve induced knowledge space
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Contribution

Focussing on refactorings to generalize, provide
Framework for generalization refactorings
Two principles

App-Gen
“application of ex. generalization”

Theory Splitting
omitted in presentation

IntelliJ plugin GUI for App-Gen
on top of the MMT plugin
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MMT

What is it?

Scalable module system for knowledge representation
esp. formal knowledge

Theoretical framework and implemented system
“MMT” vs. “MMT system”

Goals
Foundation independence
Minimalistic design
Standardized representation format

⇒ Organize knowledge into theories and morphisms

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 11 / 46



MMT

What is it?
Scalable module system for knowledge representation

esp. formal knowledge
Theoretical framework and implemented system

“MMT” vs. “MMT system”

Goals
Foundation independence
Minimalistic design
Standardized representation format

⇒ Organize knowledge into theories and morphisms

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 11 / 46



MMT

What is it?
Scalable module system for knowledge representation

esp. formal knowledge
Theoretical framework and implemented system

“MMT” vs. “MMT system”
Goals

Foundation independence
Minimalistic design
Standardized representation format

⇒ Organize knowledge into theories and morphisms

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 11 / 46



MMT

What is it?
Scalable module system for knowledge representation

esp. formal knowledge
Theoretical framework and implemented system

“MMT” vs. “MMT system”
Goals

Foundation independence

Minimalistic design
Standardized representation format

⇒ Organize knowledge into theories and morphisms

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 11 / 46



MMT

What is it?
Scalable module system for knowledge representation

esp. formal knowledge
Theoretical framework and implemented system

“MMT” vs. “MMT system”
Goals

Foundation independence
Minimalistic design
Standardized representation format

⇒ Organize knowledge into theories and morphisms

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 11 / 46



MMT

What is it?
Scalable module system for knowledge representation

esp. formal knowledge
Theoretical framework and implemented system

“MMT” vs. “MMT system”
Goals

Foundation independence
Minimalistic design
Standardized representation format

⇒ Organize knowledge into theories and morphisms

N. Roux (FAU Erlangen-Nürnberg) Refactoring Theory Graphs 15th July 2019 11 / 46



MMT Theories

theory Monoid =
include ?LF ❙
include ?NatDed ❙

U: type ❙
e: U ❙
op: U ⟶ U ⟶ U ❘ # #1 ∘ #2 ❙
associative:
⊦ ∀ [a: U] ∀ [b: U] ∀ [c: U] (a ∘ b) ∘ c ≐ a ∘ (b ∘ c) ❙

neutral: U ⟶ prop
❘ = [e'] ∀ [a: U] (a ∘ e' ≐ a) ∧ (e' ∘ a ≐ a) ❙

e_neutral: ⊦ neutral e ❙

e_unique: ⊦ ∀ [e': U] (neutral e') ⟹ e' ≐ e
❘ = … ❙ /T Proof omitted ❙

❚
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MMT Morphisms
Primer

Morphisms 𝑆 ⇝ 𝑇 assign every 𝑆-declaration a 𝑇 -expression
Consider

theory Monoid =
U: type ❙
e: U ❙
op: U ⟶ U ⟶ U ❙
associative: … ❙

neutral: … ❘ = … ❙
e_neutral: … ❙

e_unique: … ❘ = … ❙
❚

theory Nat =
ℕ: type ❙
0: ℕ ❙
s: ℕ ⟶ ℕ ❙

/T Peano axioms … ❙

plus: ℕ ⟶ ℕ ⟶ ℕ ❘ = … ❙

One possibility: U ↦ ℕ, e ↦ 0, op ↦ plus, …
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MMT Morphisms
Primer (cont.)

view σ : Monoid -> Nat =
U = ℕ ❙
e = 0 ❙
op = plus ❙
associative = … ❙
e_neutral = … ❙

❚

Only need assignment to undefined declarations
Gives rise to homomorphic extension 𝜎 ∶ Obj(Monoid) → Obj(Nat)
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MMT Morphisms
Truth Preservation

Assume well-typedness everywhere.
theory Monoid =
// … ❙

e_unique: ⊦ ∀ [e': U] (neutral e') ⟹ e' ≐ e
❘ = … ❙ /T Proof omitted ❙

❚

Then we get

𝜎(e_unique)
: ⊦ ∀ [n: ℕ] (neutral n) ⟹ n ≐ 0
= …

Corollary (Truth Preservation)
Morphisms translate theorems to theorems.
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MMT Morphisms
Meaning

They represent syntactically

translation
specialization
refinement

from poorer into richer theories.
Model-theoretically they represent model induction of more general models

every Nat-model induces a Monoid-model.

TopologicalSpace ⇝ MetricSpace ⇝ NormedVectorSpace ⇝ HilbertSpace
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Generalizations

Definition
We call a theory 𝐺 a (theory-level) generalization of a theory 𝑇 if there
is a morphism 𝑔 ∶ 𝐺 ⇝ 𝑇 .

A theory-level generalization principle is a partial algorithm accepting
𝑇 and outputting (𝐺, 𝑔).
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Behavior Preservation
Primer

When is 𝐺 ⇝ 𝑇 behavior-preserving?
Prevent information loss opposes generalization!
Prevent information addition

Intuition for inclusions
Not behavior-preserving: removing undefined declarations

e.g. Monoid ↪ Group
Behavior-preserving: removing defined declarations

e.g. all theorems of a theory
Intuition in general: preserving iff. the same theorems can be derived?
⇒ Impossible, but close!
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Behavior Preservation
Definition

Definition
A generalization 𝑔 ∶ 𝐺 ⇝ 𝑇 is called behavior-preserving if

𝑇 ⊆ 𝑔(Obj(𝐺))

where
Obj(⋅) denotes all closed well-typed 𝐺-expressions
⊆ as follows: for every (𝑐 ∶ 𝐸[= 𝑒]) ∈ 𝑇 ♭ either 𝑐 ∈ 𝑔(Obj(𝐺)) or
𝑒 ∈ 𝑔(Obj(𝐺)).
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Behavior Preservation
Fulfilled examples

𝑇 ⊆ 𝑔(Obj(𝐺))

Removing undefined declarations not behavior-preserving
Removing defined declarations behavior-preserving
Following chain not behavior-preserving

TopologicalSpace ⇝ MetricSpace ⇝ NormedVectorSpace ⇝ HilbertSpace

⇒ Weaken to behavior preservation to subset of 𝑇
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Behavior Preservation
Weakening to subset

Definition
A generalization 𝑔 ∶ 𝐺 ⇝ 𝑇 is called behavior-preserving wrt. 𝑇 ′ ⊆ 𝑇 if

𝑇 ′ ⊆ 𝑔(Obj(𝐺))

every morphism behavior-preserving wrt. its image

TopologicalSpace “behavior-preserving” wrt. continuity definitions in
MetricSpace
MetricSpace “behavior-preserving” wrt. continuity definitions in
NormedVectorSpace
…

⇒ Weaken to allow 𝛼𝛽𝜂 equational theory and more (future work)
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Behavior Preservation
Mergesort – behavior-preserving to relevant subset

theory MergeOnNat =
include ?Nat ❙
include ?PolymorphicLists ❙

merge: ℕʷ ⟶ ℕʷ ⟶ ℕʷ ❙

merge_ind_step: ⊦ …
merge (x::xs) (y::ys) ≐
if (x ≤ y)
x :: (merge xs (y::ys))

else
y :: (merge (x::xs) ys)

❙

mergesort: ℕʷ ⟶ ℕʷ ❙
// … ❙

❚

theory MergeOnNat =
include ?Nat ❙
include ?PolymorphicLists ❙

merge: ℕʷ ⟶ ℕʷ ⟶ ℕʷ ❙

merge_ind_step: ⊦ …
merge (x::xs) (y::ys) ≐
if (x ≤ y)
x :: (merge xs (y::ys))

else
y :: (merge (x::xs) ys)

❙

mergesort: ℕʷ ⟶ ℕʷ ❙
// … ❙

❚
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App-Gen
Overall task

Abstract task: Given

𝑅 𝑆

𝑇

𝜑

come up with

𝑅 𝑆

𝐺 𝑇

𝜑

𝑔

Concrete task: Given

Toset Nat

MergeOnNat

𝜑

come up with

Toset Nat

MergeOnToset MergeOnNat

𝜑

𝑔

“Generalize 𝑇 along 𝜑”
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How to generalize?

Replace include ?Nat by include ?Toset

Replace ℕ by X

ℕ
𝑋

Replace ≤ by ≤ₓ

≤
≤𝑥

theory Toset =
X: type ❙
≤ₓ: X ⟶ X ⟶ prop ❙

ax_antisymmetry: ⊦ … ❙
ax_transivitivty: ⊦ … ❙
ax_connexity: ⊦ … ❙
❚

view φ : Toset -> Nat =
X = ℕ ❙
≤ₓ = ≤ ❙

ax_antisymmetry = … ❙
ax_transitivity = … ❙
ax_connexity = … ❙

❚

⇒ Replacements given by morphism read backwards
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App-Gen-0: A First Version

Definition (App-Gen-0)
Build 𝐺 and 𝑔 ∶ 𝐺 ⇝ 𝑇 :

1 rewrite include ?S to include ?R
2 iteratively rewrite remaining declarations 𝛿 ∈ 𝑇 using

𝑐′

𝑐
𝑑
𝑑′

for (𝑐 ∶= 𝑐′) ∈ 𝜑 and rewritten 𝑑′ of 𝑑.
3 adopt 𝑔(𝑑′) ∶= 𝑑 for every rewritten 𝑑′ of 𝑑
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Mergesort Revisited

theory MergeOnToset =
include ?Toset ❙
include ?PolymorphicLists ❙

merge: Xʷ ⟶ Xʷ ⟶ Xʷ ❙

merge_ind_step: ⊦ …
merge (x::xs) (y::ys) ≐
if (x ≤ₓ y)
x :: (merge xs (y::ys))
else
y :: (merge (x::xs) ys)

❙

mergesort: Xʷ ⟶ Xʷ ❙
// … ❙
❚

theory MergeOnNat =
include ?Nat ❙
include ?PolymorphicLists ❙

merge: ℕʷ ⟶ ℕʷ ⟶ ℕʷ ❙

merge_ind_step: ⊦ …
merge (x::xs) (y::ys) ≐
if (x ≤ y)
x :: (merge xs (y::ys))

else
y :: (merge (x::xs) ys)

❙

mergesort: ℕʷ ⟶ ℕʷ ❙
// … ❙

❚
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App-Gen-0: Results I
Assume the generated theory 𝐺 is well-typed, then

Lemma
The morphism 𝑔 is well-typed and the square

𝑅 𝑆

𝐺 𝑇

𝜑

𝑔

commutes.

Corollary (Behavior Preservation)
𝑔 ∶ 𝐺 ⇝ 𝑇 is a behavior-preserving generalization wrt.

𝑇 ∖ 𝑆
(𝑇 ∖ 𝑆) ∪ 𝑆′ if 𝜑 was beh.-preserving wrt. 𝑆′ ⊆ 𝑆.
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App-Gen-0: Results I
Assume the generated theory 𝐺 is well-typed, then
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App-Gen-0: Limitations
By example

theory NormedVectorspaceThms =
include ?NormedVectorspace ❙

cauchy: (ℕ ⟶ Y) ⟶ prop ❘ = [f] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] ∀[m: ℕ]
(n ≥ N ∧ m ≥ N) ⇒ ((norm ((f n) - (f m))) < ɛ) ❙

theory NormedVectorspaceThms =
include ?NormedVectorspace ❙

cauchy: (ℕ ⟶ Y) ⟶ prop ❘ = [f] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] ∀[m: ℕ]
(n ≥ N ∧ m ≥ N) ⇒ ((norm ((f n) - (f m))) < ɛ) ❙

convergent_to: (ℕ ⟶ Y) ⟶ Y ⟶ prop ❘ = [f, y] ∀[ɛ: ℝ] ∃[N: ℕ]
∀[n: ℕ]↪

(n ≥ N) ⇒ ((norm ((f n) - y)) < ɛ) ❙

/T Lipschitz continuity of an endofunction ❙
lipschitz: (Y ⟶ Y) ⟶ prop ❘ = [f] ∀[y₁: Y] ∀[y₂: Y]
norm ((f y₁) - (f y₂)) ≤ norm (y₁ - y₂) ❙

❚

Objective: Generalize to metric spaces
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App-Gen-0: Limitations
By example (cont.)

MetricSpace NormedVectorSpace

𝐺 NormedVectorSpaceThms

𝜑

𝑔

theory MetricSpace =
X : type ❙
d: X ⟶ X ⟶ ℝ ❙
❚

theory NormedVectorspace =
Y: type ❙
norm: Y ⟶ ℝ ❙
minus: Y ⟶ Y ⟶ Y
❘ # 1 - 2 ❙

❚

view NormedAsMetricSpace : ?MetricSpace -> ?NormedVectorspace =
X = Y ❙
d = [a,b] norm (a - b) ❙
❚
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App-Gen-0: Limitations
By example (cont.)

Employed rewrite rules

𝑌
𝑋

𝜆𝑎, 𝑏. norm (𝑎 − 𝑏)
d

insufficient to rewrite
cauchy: (ℕ ⟶ Y) ⟶ prop ❘ = [f] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] ∀[m: ℕ]
(n ≥ N ∧ m ≥ N) ⇒ ((norm ((f n) - (f m))) < ɛ) ❙

Would like to have

𝑌
𝑋

𝜆𝑎, 𝑏. norm (𝑎 − 𝑏)
d

norm (𝑎 − 𝑏)
d 𝑎 𝑏
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App-Gen-1: A Revision

Definition (App-Gen-1)
Build 𝐺 and 𝑔 ∶ 𝐺 ⇝ 𝑇 :

1 rewrite include ?S to include ?R
2 iteratively rewrite remaining declarations 𝛿 ∈ 𝑇 using

𝑐′

𝑐
𝑠𝜎

𝑐 𝜎(𝑥1) … 𝜎(𝑥𝑛) dom(𝜎) = {𝑥1, … , 𝑥𝑛} 𝑑
𝑑′

for (𝑐 ∶= 𝑐′), (𝑐 ∶= 𝜆𝑥1, … , 𝑥𝑛. 𝑠) ∈ 𝜑 and rewritten 𝑑′ of 𝑑.
3 adopt 𝑔(𝑑′) ∶= 𝑑 for every rewritten 𝑑′ of 𝑑
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Live Demo
Skip after backup slides
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App-Gen-1: Outlook

In general we need a strong enough equational theory
Might include user-defined 𝑇 -theorems

⇒ Complexity of higher-order rewriting and unification
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Conclusion

Summary
Refactorings useful on formalized mathematics

Framework for generalization refactorings
𝐺 generalization of 𝑇 :⇔ there is a morphism 𝑔 ∶ 𝐺 ⇝ 𝑇
Behavior-preserving wrt. 𝑇 :⇔ 𝑇 ⊆ 𝑔(𝐺)

App-Gen captures abstraction along morphisms:
𝑅 𝑆

𝐺 𝑇
Prototypical GUI for App-Gen

Future Work
Evaluation of theory & applicability
Measures to drive automated application
Educational usecase
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Appendix
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Reading Guide I

An incomplete list of introductory references I would have personally
recommended to my former me who desired to dive into this presentation’s
topics.

My Thesis: [Rou19]
Mathematical Knowledge Management: [Koh14; Car+19]
MMT:

Overview: [MMT; Rab18]
Tutorial for Formalization: [OMT]
MMT Plugin for IntelliJ IDEA: [Intellij-MMT]
Categorical constructions, esp. colimits: [Rab17]1

1This one is not really introductory, but I found some of the ideas very enlightening
and deepening my understanding of formal systems. Even without understanding all
details, it is a valuable read for exactly this reason.
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Reading Guide II

Refactoring
Pioneering works: [Opd92; Fow19]2
Type Abstraction in Software Engineering: [BFS07; Tip07]3
Behavior Preservation, short Survey on Refactoring: [Whi13,
chs. 7.4 – 7.5]

Last, but not least: talking to people!
Especially my advisors, but as well other people at the research group.

As always, dig down the rabbit hole if you want to know something in great
detail. In case you want to know more how my work relates to others,
have a look at the related work section in my thesis [Rou19, ch. 2.3].

2Primarily to get a feel for what software engineers would call refactoring. You may
particularly peek at how [Opd92] proves behavior preservation properties.

3These works do “subtype lifting” while App-Gen does the more general “morphism
lifting”.
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