Refactoring of Theory Graphs in Knowledge
Representation Systems

Bachelor Thesis in Computer Science

Navid Roux

navid.roux@fau.de

Advisors: Prof. Dr. Michael Kohlhase, PD Dr. Florian Rabe

Friedrich-Alexander-Universitat Erlangen-Nirnberg

15t July 2019

Dear online visitor, want to dig into this topic? Have a look at the reading
guide at the end:

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 1/46

mailto:navid.roux@fau.de

Plan

0 Introduction

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 2 /46

Refactorings

“Improve internal structure without changing observable behavior.”

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 3/46

Refactorings

“Improve internal structure without changing observable behavior.”

“Neither add nor remove features.”

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 3/46

Refactorings on Theory Graphs

Objective: Help in creation & maintenance of formalizations
Reason:

need for formalization

PR

verify pen & paper theorems feed MKM

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 4/46

Need For Formalization

Four Color Theorem

Source: Inductiveload on Wikimedia
Commons, CC BY-SA 3.0

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15th July 2019 5/46

https://commons.wikimedia.org/wiki/User:Inductiveload
http://creativecommons.org/licenses/by-sa/3.0/

Need For Formalization

Kepler Conjecture

Source: Mike Licht on Flickr, CC BY 2.0
N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15th July 2019 6 /46

https://www.flickr.com/photos/notionscapital/
https://creativecommons.org/licenses/by/2.0/

Need For Formalization

Feit-Thompson Theorem

Source: A. W. Walker on awwalker.com

N. Roux (Refactoring Theory Graphs 15th July 2019 7/46

https://awwalker.com/about/
https://awwalker.com/2017/02/05/the-orders-of-simple-groups/

Need For Formalization — MKM Perspective

@ Operations on mathematical knowledge
e cataloguing

retrieval

e refactoring

e change propagation

@ Overcome One-Brain-Barrier & drive data analytics
= need for formalization

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs

15t July 2019 8/46

Need For Formalization — MKM Perspective

@ Operations on mathematical knowledge
e cataloguing

retrieval

e refactoring

e change propagation

@ Overcome One-Brain-Barrier & drive data analytics
= need for formalization

@ Generalization Refactorings improve induced knowledge space

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 8/46

Contribution

Focussing on refactorings to generalize, provide

@ Framework for generalization refactorings
@ Two principles

o ApPP-GEN
“application of ex. generalization”
o THEORY SPLITTING
omitted in presentation

o IntelliJ plugin GUI for App-GEN
on top of the MMT plugin

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 9/46

Plan

O MMT

oux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 10/ 46

MMT

What is it?

oux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 11/46

MMT

What is it?
@ Scalable module system for knowledge representation
esp. formal knowledge

@ Theoretical framework and implemented system
“MMT"” vs. “MMT system”

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 11/46

MMT

What is it?
@ Scalable module system for knowledge representation
esp. formal knowledge

@ Theoretical framework and implemented system
“MMT"” vs. “MMT system”

Goals

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 11/46

MMT

What is it?
@ Scalable module system for knowledge representation
esp. formal knowledge

@ Theoretical framework and implemented system
“MMT"” vs. “MMT system”

Goals

@ Foundation independence

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 11/46

MMT

What is it?
@ Scalable module system for knowledge representation
esp. formal knowledge

@ Theoretical framework and implemented system
“MMT"” vs. “MMT system”

Goals
@ Foundation independence
@ Minimalistic design

@ Standardized representation format

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 11/46

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15th July 2019

MMT

What is it?
@ Scalable module system for knowledge representation

esp. formal knowledge
@ Theoretical framework and implemented system

“MMT"” vs. “MMT system”
Goals

@ Foundation independence
@ Minimalistic design

@ Standardized representation format

= Organize knowledge into theories and morphisms

11/46

MMT Theories

theory Monoid =
include 7LF |
include 7MatDed |

U: type |

e: U1

op: U— U — U | ## - # 1
associative:

neutral: I — prop

e_neutral: t neutral e |

e_unigue: F ¥ [e': U] {neutral e') = e’
| =.. 1 /7T Proof omitted |
|

Fow [a: Ul 7 [b: U] % [c: U] fa -« b) «

czaeibec) |

| =1 %@ Ul (aee" 2a afe «aza |

=

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs

15t July 2019

12 /46

MMT Morphisms

Primer

Morphisms S ~» T assign every S-declaration a T-expression

Consider

theory Monoid =
U: type |
e U |
op: U—u—u |
associative: .. |

neutral: .. | = .. 1
e_neutral: .. |

e_unigue: .. |

theory Mat =

M: tupe |
A |
st H— N |

/T Peano axioms .. |

plus: W — N — N |

One possibility: U » N, e »

N. Roux (FAU Erlangen-Niirnberg)

a8, op * plus, ..

Refactoring Theory Graphs

15t July 2019

13 /46

MMT Morphisms

Primer (cont.)

view 7 @ Monoid -» Mat =
u=mnl
e=o0 |
op = plus |
associative = .. |
e_neutral = .. |

@ Only need assignment to undefined declarations

@ Gives rise to homomorphic extension @ : Obj(Monoid) — 0bj(Nat)

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 14 /46

MMT Morphisms

Truth Preservation

Assume well-typedness everywhere.

theory Monoid =
e_unigue: b ¥ [e': U] (neutral e') = e' = g
| =. 1 /T Proof omitted |
|
Then we get

o(e_unique)
P ¥ [n: M (neutral n) = n =z @6

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15th July 2019

15 /46

MMT Morphisms

Truth Preservation

Assume well-typedness everywhere.

theory Monoid =
e_unigue: b ¥ [e': U] (neutral e') = e' = g
| =. 1 /T Proof omitted |
|
Then we get

o(e_unique)
P ¥ [n: M (neutral n) = n =z @6

Corollary (Truth Preservation)

Morphisms translate theorems to theorems.

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 15 /46

MMT Morphisms

Meaning

They represent syntactically

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 16 /46

MMT Morphisms

Meaning

They represent syntactically
@ translation
@ specialization
@ refinement

from poorer into richer theories.

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 16 /46

MMT Morphisms

Meaning

They represent syntactically
@ translation
@ specialization
@ refinement

from poorer into richer theories.

Model-theoretically they represent model induction of more general models

every Nat-model induces a Monoid-model.

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 16 /46

MMT Morphisms

Meaning

They represent syntactically
@ translation
@ specialization
@ refinement

from poorer into richer theories.

Model-theoretically they represent model induction of more general models

every Nat-model induces a Monoid-model.

TopologicalSpace ~» MetricSpace ~» NormedVectorSpace ~» HilbertSpace

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 16 /46

Plan

© Framework for Generalization Refactorings

N. Roux (FAU Erlangen- Refactoring Theory Graphs 15t July 2019 17 /46

Generalizations

Definition

We call a theory G a (theory-level) generalization of a theory T if there
is a morphism g: G ~w» T.

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 18 /46

Generalizations

Definition

We call a theory G a (theory-level) generalization of a theory T if there
is a morphism g: G ~w» T.

A theory-level generalization principle is a partial algorithm accepting
T and outputting (G, g).

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 18 /46

Behavior Preservation

Primer

When is G ~» T behavior-preserving?
@ Prevent information loss

@ Prevent information addition

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs

opposes generalization!

15t July 2019

19 /46

Behavior Preservation

Primer

When is G ~» T behavior-preserving?
@ Prevent information loss opposes generalization!
@ Prevent information addition

Intuition for inclusions

@ Not behavior-preserving: removing undefined declarations
e.g. Monoid = Group
@ Behavior-preserving: removing defined declarations

e.g. all theorems of a theory

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 19/46

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15th July 2019

Behavior Preservation

Primer

When is G ~» T behavior-preserving?
@ Prevent information loss opposes generalization!
@ Prevent information addition

Intuition for inclusions
@ Not behavior-preserving: removing undefined declarations
e.g. Monoid = Group
@ Behavior-preserving: removing defined declarations
e.g. all theorems of a theory
Intuition in general: preserving iff. the same theorems can be derived?

= Impossible, but close!

19 /46

Behavior Preservation

Definition

Definition

A generalization g: G ~» T is called behavior-preserving if

T C g(0b3(G))

where
@ Obj(-) denotes all closed well-typed G-expressions

e C as follows: for every (c: E[=¢]) € T’ either ¢ € §(0bj(G)) or
e € g(0bj(G)).

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 20 /46

Behavior Preservation

Fulfilled examples

T C g(0b3(G))

@ Removing undefined declarations not behavior-preserving

@ Removing defined declarations behavior-preserving
@ Following chain not behavior-preserving

TopologicalSpace ~» MetricSpace ~» NormedVectorSpace ~» HilbertSpace

= Weaken to behavior preservation to subset of T'

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 21 /46

Behavior Preservation
Weakening to subset

Definition

A generalization g: G ~» T is called behavior-preserving wrt. 77 C T if

T’ C g(0bj(G))

@ every morphism behavior-preserving wrt. its image

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 22 /46

Behavior Preservation
Weakening to subset

Definition

A generalization g: G ~» T is called behavior-preserving wrt. 77 C T if

T’ C g(0bj(G))

every morphism behavior-preserving wrt. its image

TopologicalSpace "behavior-preserving” wrt. continuity definitions in
MetricSpace

MetricSpace “behavior-preserving” wrt. continuity definitions in
NormedVectorSpace

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 22 /46

Behavior Preservation
Weakening to subset

Definition

A generalization g: G ~» T is called behavior-preserving wrt. 77 C T if

T’ C g(0bj(G))

@ every morphism behavior-preserving wrt. its image

e TopologicalSpace "behavior-preserving” wrt. continuity definitions in
MetricSpace

@ MetricSpace “behavior-preserving” wrt. continuity definitions in
NormedVectorSpace

= Weaken to allow af3n equational theory and more (future work)

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 22 /46

Behavior Preservation

Mergesort — behavior-preserving to relevant subset

N. Roux (FAU Erlangen-Niirnberg)

theory MergelnNat =

include 7Hat |
include 7PolymorphicLists |

merge: e — N — we |
merge_ind_step: b ..

merge (x::ixs) (y:r:iys) =
if (% = y)

$orr (merge xs (yriys))
else
Yy i (merge (x::ixs) ys)
|
mergesort: He — e |l

Refactoring Theory Graphs

15t July 2019 23/46

Behavior Preservation

Mergesort — behavior-preserving to relevant subset

theory MergelnToset =
include 7Toset |
include 7PolymorphicLists |
merge: ¥w — ww — yw |

merge_ind_step: b ..
MeErge (x::xs) (Yriys) =

if (% =yl
¥ o1 (MErgE x5 (Y::iys))
else
Y 1: o (merge (xX::xs) ys)
mergesort: xKw — xw |

theory MergelnNat =
include 7Hat |
include 7PolymorphicLists |

merge: e — N — we |
merge_ind_step: b ..

merge (x::ixs) (y:r:iys) =
if (% = y)

worno(merge xs (y:iys))
else
y :: (merge (x::xs) ys)
|
mergesort: He — nNe |
|

N. Roux (FAU Erlangen-Niirnberg)

Refactoring Theory Graphs

15t July 2019 23/46

Behavior Preservation

Mergesort — behavior-preserving to relevant subset

theory MergelnToset = theory MergelnMNat =
include 7Toset | include 7Hat |
include 7PolymorphicLists |

merge: Kw — ww — yw |

merge_ind_step: F ..
merge (®:iixs) (yr:iys) =

if (% =%yl
Wit o (merge xs (Yiiys))
else
y :: o (merge (x:i:xs) ys)
|
mergesort: Kw — xw |
PV |
|

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15th July 2019 23 /46

Plan

Q Arpr-GEN

oux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 24 /46

AppP-GEN

Overall task
Abstract task: Given Concrete task: Given
R % S Toset ~~mmnns Nat
T MergeOnNat

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15th July 2019

25 /46

AppP-GEN

Overall task

Abstract task: Given

R % S

l

T

come up with

R sy S
.o
G LT

N. Roux (FAU Erlangen-Niirnberg)

Concrete task: Given

Toset ~~mmnns Nat

I

MergeOnNat
come up with

[

MergeOnToset "3 MergeOnNat

Refactoring Theory Graphs 15th July 2019 25 /46

AppP-GEN

Overall task
Abstract task: Given Concrete task: Given
R ~%s S Toset ~~~irs Nat
| l
T MergeOnNat
come up with come up with
R % § Toset ~rnBanmnnns Nat

MergeOnToset "3 MergeOnNat
“Generalize T along "

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 25 /46

How to generalize?

@ Replace include 7Nat by include ?Toset

@ Replace M by ¥

@ Replace = by =

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 26 /46

How to generalize?

@ Replace include 7Nat by include ?Toset

@ Replace M by ¥

@ Replace = by =

theory Toset = view g @ Toset -» Mat =
¥: tupe | =N |
0 % — ¥ — prop | z, = = |
ax_ant isymmetry: .. | ax_ant isymmetry = .. |
ax_transivitivty: + .. | ax_transitivity = .. |
ax_connexity: F .. | ax_connexity = .. |

| |

= Replacements given by morphism read backwards

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 26 /46

How to generalize?

@ Replace include 7Nat by include ?Toset

N
@ Replace M by ¥ —
p y X
<
@ Replace = by = —
<
—x
theory Toset = view g @ Toset -» Mat =
#: tupe | =N I
0 % — ¥ — prop | z, = = |
ax_ant isymmetry: .. | ax_ant isymmetry = .. |
ax_transivitivty: + .. | ax_transitivity = .. |
ax_connexity: F .. | ax_connexity = .. |
| |

= Replacements given by morphism read backwards

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 26 /46

ApPpP-GEN-0: A First Version

Definition (APP-GEN-0)
Build G and g: G - T

@ rewrite include 7S to include 7R

@ iteratively rewrite remaining declarations § € T' using
¢ d
@ d’
for (¢ :=¢’) € ¢ and rewritten d’ of d.
© adopt g(d’) := d for every rewritten d’ of d

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 27 /46

Mergesort Revisited

theory MergeOnToset =
include 7Toset |
include 7PolymorphicLists |

merge: ¥w — ww — yw |

merge_ind_step: b ..

merge (x::ixs) (yriys) =
if i =)
ol o (merge xS (yiiysl)
else
Yy i (merge (x::xs) ys)

mergesort: ¥w — ww |
P |

theory MergednMat =

include 7Hat |
include 7PolymorphicLists |

mer\ge: [NUJ —_— [NUJ —_— [NUJ I

merge_ind_step: b ..
merge (x::ixs) (yr:iys) =

if (% = y)
¥orr o (merge xS (yriys))
else
Y o (merge (x::ixs) ys)
|
mergesort: By — e |l
20

N. Roux (FAU Erlangen-Niirnberg)

Refactoring Theory Graphs

15t July 2019 28/46

ApPpP-GEN-0: Results |

Assume the generated theory G is well-typed, then

Lemma

The morphism g is well-typed and the square

R-Mi’iw}

N+ W0

.

Q<

commutes.

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 29 /46

APP-GEN-0: Results |

Assume the generated theory G is well-typed, then

Lemma

The morphism g is well-typed and the square

R%}

G Py

N+ W0

commutes.

\

Corollary (Behavior Preservation)

g: G ~» T is a behavior-preserving generalization wrt.
eT\S

e (T'\S)US" if o was beh.-preserving wrt. S" C S.

y
N. Roux (FAU Erlangen-Niirnberg)

Refactoring Theory Graphs 15th July 2019 29 /46

ApPpP-GEN-0: Limitations

By example

theory MormedyectorspaceThms =
include 7Hormedvectorspace |

cauchy: (N — ¥

v — prop | = [F] wile: Bl 3MN: M win: B wim: N
inzMNaamz=HN = ({norm ({(f n) - (f m)) < &)

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs

15th July 2019

30/46

ApPpP-GEN-0: Limitations

By example

theory MormedyectorspaceThms =
include 7Hormedvectorspace |

cauchy: (N — ¥
convergent_to: (M — ¥) — ¥ — prop |

o wln: M
(n =N = ((norm ((F n) - y)y <2 |

v — prop | = [F] wile: Bl 3MN: M win: B wim: N
inzMNaAamz=HN = ({norm {{(f n) - (f m)) < &)

[f, yl %l=: Bl 3[M: M

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs

15th July 2019

30/46

ApPpP-GEN-0: Limitations

By example

theory NormedvectorspaceThms =
include ?Mormedvectorspace |

cauchu: (N — %) — prop | = [f] ¥wle: B] 3MN: W] ¥In: W] ¥im: W)
fhz=MNamszN = ((norm ((fn) - (Fmi) <& |

convergent_to: (M — v) — v — prop | = [f, yl ¥le: B] 3[N: N
o 7ln: M
fn= N = ((norm (CF n) - yid < &) |

/T Lipschitz continuity of an endofunction |
lipschitz: (v — %) — prop | = [f] ¥lys: ¥] ¥lyz: ¥]
norm ((f ya) - (f yz)) = norm (us - yz) |
|

Objective: Generalize to metric spaces

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15th July 2019 30/ 46

ApPpP-GEN-0: Limitations
By example (cont.)

MetricSpace o Lnnncy NormedVectorSpace

1

G ity NormedVectorSpace Thms
theory MetricSpace = theory Normedvectorspace =
¥o: tupe | v: type |
d: ¥ — % — R | norm: ¥ — R |
[| minus: ¥ — ¥ — ¥
[#1-21
|

view MormedasMetricSpace @ ?MetricSpace -» Normedyvectorspace
" Y I
d = [a,b] norm (a - b1 |

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 31/46

ApPpP-GEN-0: Limitations
By example (cont.)

Employed rewrite rules

Y

Aa,b. norm (a —b)
X

d

insufficient to rewrite

cauchy: (N — v¥) — prop |
n =

= [f] #[=: B] 3[M: M] ¥[n: W] <[m: W]
NoamzN = ({norm ((f n) - (f my)) <) |

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 32 /46

ApPpP-GEN-0: Limitations
By example (cont.)

Employed rewrite rules

Y Aa,b. norm (a —b)

X d

insufficient to rewrite

cauchu: (N — %) — prop | = [f] ¥wle: B] 3MN: W] ¥In: N ¥im: W)
fhz=MNamszN = ((norm ((fn) - (Fmi) < |

Would like to have

Y Aa,b. norm (a — b) norm (a — b)

X d dab

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 32 /46

APP-GEN-1: A Revision

Definition (ApP-GEN-1)
Build G and g: G - T

@ rewrite include 7S to include 7R

@ iteratively rewrite remaining declarations § € T' using

c’ so d
c co(xy)...o(x,)) = e d

for (c:=¢"),(c:= Axq,...,x,. S)€E @ and rewritten d’ of d.

© adopt g(d’) := d for every rewritten d’ of d

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 33 /46

Live Demo

N. Roux (Refactoring Theory Graphs 15th July 2019 34 /46

W 1 Project

.= Refactoring

S5 Document Tree

Input theory

Refactoring Generalizer a —

JormedVectorspaceThm:

Part to be generalized (directly included theory or same as input theory) | zes?NormedVectorspace

Generalization of that part (theory) nedSpaces?MetricSpace
Specialization morphism (view) ?NormedAsMetricSpace
Generalize

Generalization Errors

heory NormedVectorspaceThmsGeneralized : http://kwarc
nfo/NavidRoux/BScThesis/DemoMaterial /AppGen?OurMath =
include http://kwarc.info/NavidRoux/BScThesis/DemoMaterial /AppGen
/metricAndNormedSpaces?MetricSpace |

cauchy

: (—X)—prop |

= [fl9[e:R] 3[N:N] W [n:] ¥ [zl n=Nam=N=(d (f n) (f m))<e |
convergent_to

(v—X)—X—prop |

= [fyl¥[eRI3[N:N] ¥ [n:Nin=N=(d (f n) y) <& |

insert > >

W 1 rroject

. “* Refactoring

/%% Document Tree

Refactoring Generalizer o —

Input theory JormedVectorspaceThm:

Part to be generalized (directly included theory or same as input theory) | es?NormedVectorspace

Generalization of that part (theory) nedSpaces?’MetricSpace
Specialization morphism (view) ?NormedAsMetricSpace
Generalize

~ Generalization Errors

heory NormedVectorspaceThmsGeneralized : http://kwarc
info/NavidRoux/BScThesis/DemoMaterial/AppGen?OurMath =
include http://kwarc.info/NavidRoux/BScThesis/DemoMaterial/AppGen
/metricAndNormedSpaces?MetricSpace |

cauchy

(—X)—prop |

= [fl9[eR] 3 [N:N] % [n:i] ¥ [m:i]n=Nam=N=(d (f n) (f m))<e |
convergent_to

(—X)—X—prop |

= [fy]¥[ERIFN:N ¥ [n:NIn=N=(d (fn) y)<£ |

v ?not_rewritable
~ definition
norm

insert =>

ApPpP-GEN-1: Outlook

@ In general we need a strong enough equational theory

@ Might include user-defined T-theorems

= Complexity of higher-order rewriting and unification

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 37 /46

Plan

© Conclusion

Refactoring Theory Graphs 15t July 2019 38/46

Conclusion

Summary

@ Refactorings useful on formalized mathematics

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 39 /46

Conclusion

Summary

@ Refactorings useful on formalized mathematics
@ Framework for generalization refactorings

o (generalization of T :< there is a morphism g: G w» T
o Behavior-preserving wrt. T' 1 T' C g(G)

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 39 /46

Conclusion

Summary

@ Refactorings useful on formalized mathematics
@ Framework for generalization refactorings

o (generalization of T :< there is a morphism g: G w» T
o Behavior-preserving wrt. T' 1 T' C g(G)

R AAAAAS
@ APP-GEN captures abstraction along morphisms:

<
N+ W0

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 39 /46

Conclusion

Summary

@ Refactorings useful on formalized mathematics
@ Framework for generalization refactorings

o (generalization of T :< there is a morphism g: G w» T
o Behavior-preserving wrt. T' 1 T' C g(G)

R AAAAAS
@ APP-GEN captures abstraction along morphisms:

<
N+ W0

@ Prototypical GUI for AppP-GEN

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 39 /46

Conclusion

Summary

@ Refactorings useful on formalized mathematics
@ Framework for generalization refactorings

o (generalization of T :< there is a morphism g: G w» T
o Behavior-preserving wrt. T' 1 T' C g(G)

R AAAAAS
@ APP-GEN captures abstraction along morphisms:

<
N+ W0

@ Prototypical GUI for AppP-GEN
Future Work
o Evaluation of theory & applicability
@ Measures to drive automated application

@ Educational usecase

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 39 /46

Appendix

oux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 40 /46

Reading Guide |

An incomplete list of introductory references | would have personally
recommended to my former me who desired to dive into this presentation’s
topics.

e My Thesis: [|

e Mathematical Knowledge Management: | ;]
e MMT:

o Overview: [;]

o Tutorial for Formalization: |]

o MMT Plugin for IntelliJ IDEA: |]
]

Categorical constructions, esp. colimits: | It

1This one is not really introductory, but | found some of the ideas very enlightening
and deepening my understanding of formal systems. Even without understanding all
details, it is a valuable read for exactly this reason.

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15t July 2019 41 /46

Reading Guide I

@ Refactoring

o Pioneering works: |
o Type Abstraction in Software Engineering: [; I
e Behavior Preservation, short Survey on Refactoring: |

chs. 7.4 - 7.5]

@ Last, but not least: talking to people!
Especially my advisors, but as well other people at the research group.

i

]2

1

As always, dig down the rabbit hole if you want to know something in great
detail. In case you want to know more how my work relates to others,
have a look at the related work section in my thesis | , ch. 2.3].

2Primarily to get a feel for what software engineers would call refactoring. You may
particularly peek at how [] proves behavior preservation properties.
3These works do “subtype lifting” while APP-GEN does the more general “morphism
lifting".
Refactoring Theory Graphs 15th July 2019 42/46

References |

B

Markus Bach, Florian Forster, and Friedrich Steimann.
“Declared Type Generalization Checker: An Eclipse
Plug-In for Systematic Programming with More General
Types”. In: Fundamental Approaches to Software
Engineering. Ed. by Matthew B. Dwyer and

Anténia Lopes. Vol. 4422, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 117-120. 1SBN:
978-3-540-71288-6 978-3-540-71289-3. DOTI:
10.1007/978-3-540-71289-3_10. URL:
http://link.springer.com/10.1007/978-3-540-
71289-3_10 (visited on 03/12/2019).

Jacques Carette et al. “Big Math and the One-Brain
Barrier — A Position Paper and Architecture Proposal™.
submitted to Mathematical Intelligencer. 2019. URL:
https://arxiv.org/abs/1904.10405.

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15th July 2019 43 /46

https://doi.org/10.1007/978-3-540-71289-3_10
http://link.springer.com/10.1007/978-3-540-71289-3_10
http://link.springer.com/10.1007/978-3-540-71289-3_10
https://arxiv.org/abs/1904.10405

References |l

[

Martin Fowler. Refactoring: improving the design of
existing code. Second edition. Addison-Wesley signature
series. OCLC: on1064139838. Boston: Addison-Wesley,
2019. 418 pp. 1sBN: 978-0-13-475759-9.

UniFormal/IntelliJ-MMT — An IntelliJ-Plugin for MMT.
URL: https://github.com/UniFormal/IntelliJ-MMT
(visited on 06/13/2019).

Michael Kohlhase. “Mathematical Knowledge
Management: Transcending the One-Brain-Barrier with
Theory Graphs”. In: EMS Newsletter (June 2014),

pp. 22-27. URL: https://kwarc.info/people/
mkohlhase/papers/ems13.pdf.

UniFormal/MMT — The MMT Language and System.
URL: https://github.com/UniFormal/MMT (visited on
10/24/2017).

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15th July 2019 44 / 46

https://github.com/UniFormal/IntelliJ-MMT
https://kwarc.info/people/mkohlhase/papers/ems13.pdf
https://kwarc.info/people/mkohlhase/papers/ems13.pdf
https://github.com/UniFormal/MMT

References IlI

B

Michael Kohlhase and Dennis Miiller. OMDoc/MMT
Tutorial for Mathematicians. URL: https:
//gl.mathhub.info/Tutorials/Mathematicians/
blob/master/tutorial/mmt-math-tutorial.pdf
(visited on 10/07/2017).

William F. Opdyke. “Refactoring Object-oriented
Frameworks”. PhD thesis. Champaign, IL, USA: University
of Illinois at Urbana-Champaign, 1992.

Florian Rabe. “How to ldentify, Translate, and Combine
Logics?” In: Journal of Logic and Computation 27.6
(2017), pp. 1753-1798.

Florian Rabe. “MMT: A Foundation-Independent Logical
Framework”. Online Documentation. 2018. URL:
https://kwarc.info/people/frabe/Research/rabe_
mmtsys_18.pdf.

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15th July 2019 45 / 46

https://gl.mathhub.info/Tutorials/Mathematicians/blob/master/tutorial/mmt-math-tutorial.pdf
https://gl.mathhub.info/Tutorials/Mathematicians/blob/master/tutorial/mmt-math-tutorial.pdf
https://gl.mathhub.info/Tutorials/Mathematicians/blob/master/tutorial/mmt-math-tutorial.pdf
https://kwarc.info/people/frabe/Research/rabe_mmtsys_18.pdf
https://kwarc.info/people/frabe/Research/rabe_mmtsys_18.pdf

References IV

B

Navid Roux. Refactoring of Theory Graphs in Knowledge
Representation Systems. B.Sc. Thesis. July 2019. URL:
https://gl.kwarc.info/supervision/BSc-
archive/blob/master/2019/Roux_Navid.pdf.

Frank Tip. “Refactoring Using Type Constraints”. In:
Static Analysis. Ed. by Hanne Riis Nielson and

Gilberto Filé. Springer Berlin Heidelberg, 2007, pp. 1-17.
ISBN: 978-3-540-74061-2.

lain Johnston Whiteside. “Refactoring Proofs”.

PhD thesis. Edinburgh: The University of Edinburgh,
2013. URL: https://www.era.lib.ed.ac.uk/handle/
1842/79707show=full.

N. Roux (FAU Erlangen-Niirnberg) Refactoring Theory Graphs 15th July 2019 46 / 46

https://gl.kwarc.info/supervision/BSc-archive/blob/master/2019/Roux_Navid.pdf
https://gl.kwarc.info/supervision/BSc-archive/blob/master/2019/Roux_Navid.pdf
https://www.era.lib.ed.ac.uk/handle/1842/7970?show=full
https://www.era.lib.ed.ac.uk/handle/1842/7970?show=full

	Introduction
	MMT
	Framework for Generalization Refactorings
	App-Gen
	Conclusion
	References
	References

